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1 Introduction
You will already be familiar with the concept of symmetry in an everyday sense. If we say something
is ‘symmetric’, we usually mean it has mirror symmetry, or ‘left-right’ symmetry, and would look
the same if viewed in a mirror. Symmetry is also very important in chemistry. Some molecules are
clearly ‘more symmetric’ than others, but what consequences does this have, if any? The aim of
this course is to provide a systematic treatment of symmetry in chemical systems within the mathe-
matical framework known as group theory (the reason for the name will become apparent later on).
Once we have classified the symmetry of a molecule, group theory provides a powerful set of tools
that provide us with considerable insight into many of its chemical and physical properties. Some
applications of group theory that will be covered in this course include:

1. Predicting whether a given molecule will be chiral, or polar.

2. Examining chemical bonding and visualising molecular orbitals.

3. Predicting whether a molecule may absorb light of a given polarisation, and which spectroscopic
transitions may be excited if it does.

4. Investigating the vibrational motions of the molecule.

You will meet some of these topics again in later courses (notably Bonding in Molecules, various
Spectroscopy courses and the Supplementary Quantum Mechanics and Crystallography courses if
you choose to follow either of those). However, they will be introduced here to give you a fairly
broad introduction to the capabilities and applications of group theory once we have worked through
the basic principles and ‘machinery’� of the theory.
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2 Symmetry operations and symmetry elements
A symmetry operation is an action that leaves an object looking the same after it has been carried
out. For example, if we take a molecule of water and rotate it by 180° about an axis passing through
the central O atom (between the two H atoms) it will look the same as before. It will also look the
same if we reflect it through either of two mirror planes, as shown in Figure 1.

Figure 1: Symmetry elements and operations for H2O

Each symmetry operation has a corresponding symmetry element, which is the axis, plane, line or
point with respect to which the symmetry operation is carried out. The symmetry element consists
of all the points that stay in the same place when the symmetry operation is performed. In a rota-
tion, the line of points that stay in the same place constitute a symmetry axis; in a reflection the
points that remain unchanged make up a plane of symmetry.

The symmetry elements that a molecule may possess are:

1. E - the identity. The identity operation consists of doing nothing, and the corresponding
symmetry element is the entire molecule. Every molecule has at least this element.

2. Cn - an n-fold axis of rotation. Rotation by 360°/n leaves the molecule unchanged. The H2O
molecule above has a C2 axis. Some molecules have more than one Cn axis, in which case the
one with the highest value of n is called the principal axis. Note that by convention rotations
are counterclockwise about the axis.

3. σ - a plane of symmetry. Reflection in the plane leaves the molecule looking the same. In a
molecule that also has an axis of symmetry, a mirror plane that includes the axis is called a
vertical mirror plane and is labelled σv, while one perpendicular to the axis is called a horizontal
mirror plane and is labelled σh. A vertical mirror plane that bisects the angle between two C2

axes is called a dihedral mirror plane, σd.

4. i - a centre of symmetry. Inversion through the centre of symmetry leaves the molecule
unchanged. Inversion consists of passing each point through the centre of inversion and out to
the same distance on the other side of the molecule. An example of a molecule with a centre
of inversion is shown below.
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5. Sn - an n-fold improper rotation axis (also called a rotary-reflection axis). The rotary reflection
operation consists of rotating through an angle 360°/n about the axis, followed by reflecting
in a plane perpendicular to the axis. Note that S1 is the same as reflection and S2 is the same
as inversion.

The identity E and rotations Cn are symmetry operations that could actually be carried out on a
molecule. For this reason they are called proper symmetry operations. Reflections, inversions and
improper rotations can only be imagined (it is not actually possible to turn a molecule into its mirror
image or to invert it without some fairly drastic rearrangement of chemical bonds) and as such, are
termed improper symmetry operations.

A note on axis definitions: Conventionally, when imposing a set of cartesian axes on a molecule (as
we will need to do later on in the course), the z axis lies along the principal axis of the molecule,
the x axis lies in the plane of the molecule (or in a plane containing the largest number of atoms if
the molecule is non-planar), and the y axis makes up a right handed axis system.

2.1 Classification of molecules – point groups
It is only possible for certain combinations of symmetry elements to be present in a molecule (or any
other object). As a result, we may group together molecules that possess the same symmetry ele-
ments and classify molecules according to their symmetry. These groups of symmetry elements are
called point groups (due to the fact that there is at least one point in space that remains unchanged
no matter which symmetry operation from the group is applied). There are two systems of nota-
tion for labelling symmetry groups, called the Schoenflies and Hermann-Mauguin (or International)
systems. The symmetry of individual molecules is usually described using the Schoenflies notation,
and we shall be using this notation for the remainder of the course.∗ Note: Some of the point groups
share their names with symmetry operations, so be careful you don’t mix up the two. For example,
C3 is used to label an operation (a rotation of 120°), but also the C3 point group (which contains
only the E and C3 operations). It is usually clear from the context which one is being referred to.

Common molecular point groups are listed below.
∗Though the Hermann-Mauguin system can be used to label point groups, it is usually used in the discussion of

crystal symmetry. In crystals, in addition to the symmetry elements described above, translational symmetry elements
are very important. Translational symmetry operations leave no point unchanged, with the consequence that crystal
symmetry is described in terms of space groups rather than point groups.
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1. C1 – contains only the identity (a C1 rotation is a rotation by 360° and is the same as the
identity operation E) e.g. CHDFCl.

2. Ci - contains the identity E and a centre of inversion i.

3. Cs - contains the identity E and a plane of reflection σ.

4. Cn – contains the identity and an n-fold axis of rotation.

5. Cnv – contains the identity, an n-fold axis of rotation, and n vertical mirror planes σv.

6. Cnh - contains the identity, an n-fold axis of rotation, and a horizontal reflection plane σh
(note that in C2h this combination of symmetry elements automatically implies a centre of
inversion).

7. Dn - contains the identity, an n-fold axis of rotation, and n 2-fold rotations about axes per-
pendicular to the principal axis.

8. Dnh - contains the same symmetry elements as Dn with the addition of a horizontal mirror
plane.

9. Dnd - contains the same symmetry elements as Dn with the addition of n dihedral mirror
planes.

10. Sn - contains the identity and one Sn axis. Note that molecules only belong to Sn if they have
not already been classified in terms of one of the preceding point groups (e.g. S2 is the same
as Ci, and a molecule with this symmetry would already have been classified).
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The following groups are the cubic groups, which contain more than one principal axis. They
separate into the tetrahedral groups (Td, Th and T ) and the octahedral groups (O and Oh). The
icosahedral group also exists but is not included below.

11. Td – contains all the symmetry elements of a regular tetrahedron, including the identity, 4 C3

axes, 3 C2 axes, 6 dihedral mirror planes e.g. CH4.

12. Oh – the group of the regular octahedron e.g. SF6.

13. O – as for Oh but with no planes of reflection.

The final group is the full rotation group R3, which consists of an infinite number of Cn axes with
all possible values of n and describes the symmetry of a sphere. Atoms (but no molecules) belong
to R3, and the group has important applications in atomic quantum mechanics.

Once you become more familiar with the symmetry elements and point groups described above, you
will find it quite straightforward to classify a molecule in terms of its point group. In the meantime,
the flowchart shown below provides a step-by-step approach to the problem.
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2.2 Symmetry and physical properties
Carrying out a symmetry operation on a molecule must not change any of its physical properties.
It turns out that this has some interesting consequences, allowing us to predict whether or not a
molecule may be chiral or polar on the basis of its point group.

2.2.1 Polarity

For a molecule to have a permanent dipole moment, it must have an asymmetric charge distribu-
tion. The point group of the molecule not only determines whether the molecule may have a dipole
moment, but also in which direction(s) it may point.

If a molecule has a Cn axis with n > 1, it cannot have a dipole moment perpendicular to the axis
of rotation (for example, a C2 rotation would interchange the ends of such a dipole moment and
reverse the polarity, which is not allowed – rotations with higher values of n would also change the
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direction in which the dipole points). Any dipole must lie parallel to a Cn axis.

Also, if the point group of the molecule contains any symmetry operation that would interchange the
two ends of the molecule, such as a σh mirror plane or a C2 rotation perpendicular to the principal
axis, then there cannot be a dipole moment along the axis.

The only groups compatible with a dipole moment are Cn, Cnv and Cs. In molecules belonging to
Cn or Cnv the dipole must lie along the axis of rotation.

2.2.2 Chirality

Enantiomers are non-superimposable mirror images of each other, and one consequence of this
symmetrical relationship is that they rotate the plane of polarised light passing through them in
opposite directions. Such molecules are said to be chiral,† meaning that they cannot be superimposed
on their mirror image. Formally, the symmetry element that precludes a molecule from being chiral
is a rotation-reflection axis Sn. Such an axis is often implied by other symmetry elements present
in a group. For example, a point group that has Cn and σh as elements will also have Sn. A centre
of inversion is equivalent to S2. As a rule of thumb, a molecule definitely cannot be chiral if it has
a centre of inversion or a mirror plane of any type (σh, σv or σd), but if these symmetry elements
are absent the molecule should be checked carefully for an Sn axis before it is assumed to be chiral.

3 Mathematical definition of a group: Combining symmetry
operations

Now we will investigate what happens when we apply two symmetry operations in sequence. As
an example, consider the NH3 molecule, which belongs to the C3v point group. Consider what
happens if we apply a C+

3 rotation followed by a σv reflection (Figure 2 and red shaded cell in Table
3.1). We write this combined operation σvC

+
3 (when written, symmetry operations operate on the

thing directly to their right, just as operators do in quantum mechanics – we therefore have to work
backwards from right to left from the notation to get the correct order in which the operators are
applied). The combined operation σvC+

3 is equivalent to σ′′

v , which is also a symmetry operation of
the C3v point group. Now let’s see what happens if we apply the operators in the reverse order i.e.
C+

3 σv (σv followed by C+
3 ) (yellow shaded cell). Again, the combined operation C+

3 σv is equivalent
to another operation of the point group, this time σ′

v.

There are two important points that are illustrated by this example:

1. The order in which two operations are applied matters. For two symmetry operations A and
B, AB is not necessarily the same as BA, i.e. symmetry operations do not in general commute.
In some groups the symmetry elements do commute; such groups are said to be Abelian.

2. If two operations from the same point group are applied in sequence, the result will be equiva-
lent to another operation from the point group. Symmetry operations that are related to each

†The word chiral has its origins in the Greek word for hand (χερι, pronounced ‘cheri’ with a soft ch as in ‘loch’)
A pair of hands is also a pair of non-superimposable mirror images, and you will often hear chirality referred to as
‘handedness’ for this reason.
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Figure 2: Effect of consecutive symmetry operations

other by other symmetry operations of the group are said to belong to the same class.‡ In
NH3, the three mirror planes σv, σ′

v and σ
′′

v belong to the same class (related to each other
through a C3 rotation), as do the rotations C+

3 and C−
3 (anticlockwise and clockwise rotations

about the principal axis, related to each other by a vertical mirror plane).

The effects of applying two symmetry operations in sequence within a given point group are sum-
marised in group multiplication tables. As an example, the complete group multiplication table for
C3v using the symmetry operations as defined in the figures above is shown in Table 3.1. The opera-
tions written along the first row of the table are carried out first, followed by those written in the first
column (note that the table would change if we chose to name σv, σ′

v and σ′′

v in some different order).

Now that we have explored some of the properties of symmetry operations and elements and their
behaviour within point groups, we are ready to introduce the formal mathematical definition of a
group.

A mathematical group is defined by a set of elements (g1,g2,g3,…) together with a rule for forming
combinations gigj . The number of elements h is called the order of the group. For our purposes,
the elements are the symmetry operations of a molecule and the rule for combining them is the
sequential application of symmetry operations investigated in section 3. The elements of the group
and the rule for combining them must satisfy the following criteria:

1. The group must include the identity E, for which Egi = giE = gi for all the elements of the
‡We will refine what ’related to’ means in section 5.5
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1st operation

C3v E C+
3 C−

3 σv σ
′

v σ
′′

v

2nd
operation

E E C+
3 C−

3 σv σ
′

v σ
′′

v

C+
3 C+

3 C−
3 E σ

′

v σ
′′

v σv

C−
3 C−

3 E C+
3 σ

′′

v σv σ
′

v

σv σv σ
′′

v σ
′

v E C−
3 C+

3

σ
′

v σ
′

v σv σ
′′

v C+
3 E C−

3

σ
′′

v σ
′′

v σ
′

v σv C−
3 C+

3 E

Table 3.1: Group multiplication table for C3v

group.

2. The elements must satisfy the group property that the combination of any pair of elements is
also an element of the group (’closure’).

3. Each element gi must have an inverse g−1
i , which is also an element of the group, such that

gig
−1
i = g−1

i gi = E (e.g. in C3v the inverse of C+
3 is C−

3 , the inverse of σv is σv; the inverse
g−1
i ‘undoes’ the effect of the symmetry operation gi).

4. The rule of combination must be associative i.e. gi(gjgk) = (gigj)gk

The above definition does not require the elements to commute (which would require gigk = gkgi).
As we showed in the C3v example above, in many groups the outcome of consecutive application
of two symmetry operations depends on the order in which the operations are applied. Groups for
which the elements do not commute are called non-Abelian groups; those for which the elements do
commute are Abelian. Along with the formal definition of a group comes a comprehensive mathemat-
ical framework that allows us to carry out a rigorous treatment of symmetry in molecular systems
and learn about its consequences.

Many problems involving operators or operations (such as those found in quantum mechanics or
group theory) may be reformulated in terms of matrices. For example, symmetry operations such
as rotations and reflections may be represented by matrices. It turns out that the set of matrices
representing the symmetry operations in a group obey all the conditions laid out above in the math-
ematical definition of a group, and using matrix representations of symmetry operations simplifies
calculations in group theory. Before we learn how to use matrices in group theory, it will be helpful
to review some basic definitions and properties of matrices.

4 Review of matrix algebra
This section should be a review of the material presented in the 1st year maths course, (HT, Vectors
and Determinants, Lectures 5 and 6, TT, Matrix Algebra).
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An n×m matrix is a two dimensional array of numbers with n rows and m columns. The integers
n and m are called the dimensions of the matrix. If n = m then the matrix is square. The numbers
in the matrix are known as matrix elements (or just elements) and are usually given subscripts to
signify their position in the matrix e.g. an element aij would occupy the ith row and jth column of
the matrix. For example:

M =


1 2 3

4 5 6

7 8 9

 is a 3× 3 matrix with a11 = 1, a12 = 2, a13 = 3, a21 = 4 etc.

In a square matrix, diagonal elements are those for which i = j (the numbers 1, 5 and 9 in the
above example). Off-diagonal elements are those for which i 6= j (2, 3, 4, 6, 7, and 8 in the above
example). If all the off-diagonal elements are equal to zero then we have a diagonal matrix. We will
see later that diagonal matrices are of considerable importance in group theory.

A unit matrix or identity matrix (usually given the symbol I) is a diagonal matrix in which all the
diagonal elements are equal to 1. A unit matrix acting on another matrix has no effect – it is the
same as the identity operation in group theory and is analogous to multiplying a number by 1 in
everyday arithmetic.

The transpose AT of a matrix A is the matrix that results from interchanging all the rows and
columns. A symmetric matrix is the same as its transpose (AT = A i.e. aij = aji for all values of i
and j). The transpose of matrix M above (which is not symmetric) is

MT =


1 4 7

2 5 8

3 6 9


The sum of the diagonal elements in a square matrix is called the trace (or character) of the matrix
(for the above matrix, the trace is χ = 1+5+9 = 15). The traces of matrices representing symmetry
operations will turn out to be of great importance in group theory.

A vector is just a special case of a matrix in which one of the dimensions is equal to 1. An n × 1
matrix is a column vector ; a 1×m matrix is a row vector. The components of a vector are usually
only labelled with one index. A unit vector has one element equal to 1 and the others equal to zero
(it is the same as one row or column of an identity matrix). We can extend the idea further to say
that a single number is a matrix (or vector) of dimension 1× 1.

4.1 Matrix algebra
1. Two matrices with the same dimensions may be added or subtracted by adding or subtracting

the elements occupying the same position in each matrix:
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A =


1 0 2

2 2 1

3 2 0

 B =


2 0 −2

1 0 1

1 −1 0

 A+B =


3 0 0

3 2 2

4 1 0

 A−B =


−1 0 4

1 2 0

2 3 0


2. A matrix may be multiplied by a constant by multiplying each element by the constant:

4B =


8 0 −8

4 0 4

4 −4 0

 3A =


3 0 6

6 6 3

9 6 0


3. Two matrices may be multiplied together provided that the number of columns of the first

matrix is the same as the number of rows of the second matrix i.e. an n×m matrix may be
multiplied by an m × l matrix. The resulting matrix will have dimensions n × l. To find the
element aij in the product matrix, we take the dot product of row i of the first matrix and
column j of the second matrix (i.e. we multiply consecutive elements together from row i of
the first matrix and column j of the second matrix and add them together i.e. cij =

∑
k aikbkj

e.g.. in the 3×3 matrices A and B used in the above examples, the first element in the product
matrix C = AB is c11 = a11b11 + a12b21 + a13b31

AB =


1 0 2

2 2 1

3 2 0



2 0 −2

1 0 1

1 −1 0

 =


4 −2 −2

7 −1 −2

8 0 −4


Matrix multiplication is not generally commutative, a property that mirrors the behaviour found
earlier for symmetry operations within a point group.

4.2 Inverse matrices and determinants
If two square matrices A and B multiply together to give the identity matrix I (i.e. AB = I) then
B is said to be the inverse of A (written A−1). If B is the inverse of A then A is also the inverse
of B. Recall that one of the conditions imposed upon the symmetry operations in a group is that
each operation must have an inverse. It follows by analogy that any matrices we use to represent
symmetry elements (Section 4.4) must also have inverses. A square matrix only has an inverse if its
determinant, usually written det(A) or |A|, is non-zero.

For a 2× 2 matrix

A =

a b

c d

 det(A) =
∣∣∣A∣∣∣ =

∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣ = ad− bc

For a 3× 3 matrix
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B =


a b c

d e f

g h i

 det(B) =
∣∣∣B∣∣∣ = a

∣∣∣∣∣∣e f

h i

∣∣∣∣∣∣− b

∣∣∣∣∣∣d f

g i

∣∣∣∣∣∣+ c

∣∣∣∣∣∣d e

g h

∣∣∣∣∣∣
and so on in higher dimensions. Note that the sub-matrices in the 3× 3 example above are just the
matrices formed from the original matrix B that don’t include any elements from the same row or
column as the pre-multiplying factors from the first row.

The inverse of a 2× 2 matrix is formed as the transpose of the matrix of co-factors:

A =

a b

c d


A−1 =

1

det(A)

 d −b

−c a


AA−1 =

1

ab− cd

ad− bc −ab+ ab

cd− cd −bc+ ad

 =

1 0

0 1


4.3 Direct sums and products
The direct sum of two matrices (given the symbol ⊕) is a special type of matrix sum that generates
a matrix of higher dimensionality. If we take two 2× 2 matrices, A and B

A =

a11 a12

a21 a22

 B =

b11 b12

b21 b22


The direct sum of the two matrices,

A⊕B =

a11 a12

a21 a22

⊕

b11 b12

b21 b22

 =

A 0

0 B

 =


a11 a12 0 0

a21 a22 0 0

0 0 b11 b12

0 0 b21 b22


The direct product of two matrices (given the symbol ⊗) also generates a matrix of higher dimen-
sionality if both matrices have dimension greater than one.
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A⊗B =

a11 a12

a21 a22

⊗

b11 b12

b21 b22

 =

a11B a12B

a21B a22B

 =


a11b11 a11b12 a12b11 a11b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


Though this may seem like a somewhat strange operation to carry out, direct products crop up a
great deal in group theory. For example, there are many times when we would like to know whether
a particular integral is necessarily zero, or whether there is a chance that it may be non-zero. If the
former, then we do not need to calculate it explicitly. We can often use group theory to differentiate
these two cases.

The use of symmetry properties of functions to determine whether or not a one-dimensional integral
is zero is already familiar. For example, sin(x) is an ‘odd’ function (anti-symmetric with respect to
reflection through the origin), and it follows from this that

∫ +a

−a
sin(x)dx = 0. In the general case,

we have integrals of the form:

I =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y, z)dxdydz

which is often abbreviated as:
I =

∫
f(x, y, z)dτ

where the symbol dτ indicates integration over all space. If the function is ’odd’, the integral is zero:

f(x) = −f(−x)
∫ +∞

−∞
f(x)dx = 0

by contrast for even functions the integral is not necessarily zero:

f(x) = f(−x)
∫ +∞

−∞
f(x)dx 6= 0

By extending these ideas to three dimensions, a general rule emerges which is that in a particular
point group an integral over all space can only non zero if the function being integrated belongs to
the totally symmetric irreducible representation (i.e. it is invariant to any symmetry operation).§
If this condition is not satisfied the “odd” nature of the function under one or more symmetry op-
erations always give rise to negative volume elements which cancel positive volume elements.

We will return to these ideas when we consider selection rules in Section 9.5.
§It should be noted that even when the irreps spanned by the integrand do include the totally symmetric irrep, it

is still possible for the integral to be zero. All group theory allows us to do is identify integrals that are necessarily
zero based on the symmetry (or lack thereof) of the integrand.
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4.4 Transformation matrices
Matrices can be used to map one set of coordinates or functions onto another set. Matrices used
for this purpose are called transformation matrices. In group theory, we can use transformation
matrices to carry out the various symmetry operations considered at the beginning of the course.
As a simple example, we will investigate the matrices we would use to carry out some of these
symmetry operations on a 3-dimensional vector (x, y, z).

1. The identity operation
The identity operation leaves the vector unchanged, and as you may already suspect, the
appropriate matrix is the identity matrix.

(
x y z

)
1 0 0

0 1 0

0 0 1

 =
(
x y z

)

2. Reflection in a plane
The simplest example of a reflection matrix corresponds to reflecting the vector (x, y, z) in
either the xz or yz planes. Reflection in the xz plane maps y to −y and leaves the other
two components unchanged, while reflection in the yz plane maps x to −x. The appropriate
matrices are very like the identity matrix but with a change in sign for the appropriate element.
Reflection in the xz plane transforms the vector (x, y, z) to (x,−y, z), reflection in the yz plane
transforms the vector (x, y, z) to (−x, y, z). The corresponding 3× 3 transformation matrices
are shown in the Figure below.

(
x y z

)
1 0 0

0 −1 0

0 0 1

 =
(
x −y z

) (
x y z

)
−1 0 0

0 1 0

0 0 1

 =
(
−x y z

)

3. Rotation about an axis. Counter-clockwise rotations about the z axis acting on a vector (x, y, z)
are represented by the following matrix.

(
x y z

)
cosθ −sinθ 0

sinθ cosθ 0

0 0 1


4. Inversion. Inversion of the vector (x, y, z) through the origin is represented by the following

matrix.

16



(
x y z

)
−1 0 0

0 −1 0

0 0 −1


5. Improper rotation. A rotation about the z axis, followed by reflection in the xy plane is

represented by the following matrix.

(
x y z

)
cosθ −sinθ 0

sinθ cosθ 0

0 0 −1


5 Matrix representations of groups
We are now ready to integrate what we have just learned about matrices with group theory. The
symmetry operations in a group may be represented by a set of transformation matrices Γ(g), one
for each symmetry element g. Each individual matrix is called a matrix representative of the cor-
responding symmetry operation, and the complete set of matrices is called a matrix representation
of the group. The matrix representatives act on some chosen basis set of functions, and the actual
matrices making up a given representation will depend on the basis that has been chosen. The
representation is then said to span the chosen basis. In the examples above we were looking at
the effect of some simple transformation matrices on an arbitrary vector (x, y, z). The basis was
therefore a set of unit vectors pointing in the x, y and z directions. In most of the examples we
will be considering in this course, we will use sets of atomic orbitals as basis functions for matrix
representations, but sometimes we will use the (vibrating) bonds of a molecule.

5.1 Matrix representation of the C2v point group using the p(π) orbitals
of the allyl radical

In this example, we take as our basis the set of p orbitals on each carbon atom that lie perpendicular
to the molecular plane, (p1, p2, p3) i.e the orbitals that will form the π bonds.

The symmetry operations in the C2v point group, and their effect on the three p orbitals, are as
follows:
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E (p1, p2, p3) → (p1, p2, p3)

C2 (p1, p2, p3) → (−p3,−p2,−p1)

σv (p1, p2, p3) → (−p1,−p2,−p3)

σ
′

v (p1, p2, p3) → (p3, p2, p1)

The matrices that carry out the transformation are:

• E(p1, p2, p3) = (p1, p2, p3)


1 0 0

0 1 0

0 0 1

 = (p1, p2, p3)

• C2(p1, p2, p3) = (p1, p2, p3)


0 0 −1

0 −1 0

−1 0 0

 = (−p3,−p2,−p1)

• σv(p1, p2, p3) = (p1, p2, p3)


−1 0 0

0 −1 0

0 0 −1

 = (−p1,−p2,−p3)

• σ
′

v(p1, p2, p3) = (p1, p2, p3)


0 0 1

0 1 0

1 0 0

 = (p3, p2, p1)

5.2 Matrix representation of the C3v point group using the set of p orbitals
at the origin

We have seen that the C3v point group has 6 symmetry operations, E, C+
3 , C−

3 , σv, σ′

v and σ
′′

v .

The pz orbital is perpendicular to the plane, and remains unchanged by all of the symmetry oper-
ations. px and py, in contrast, are changed, and the resultant can be a linear combination of the
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original set. The precise effects of the symmetry operations on the px, py, pz basis are as follows:

E (px, py, pz) → (px, py, pz)

C+
3 (px, py, pz) → (− 1

2px +
√
3
2 py,−

√
3
2 px − 1

2py, pz)

C−
3 (px, py, pz) → (− 1

2px −
√
3
2 py,

√
3
2 px − 1

2py, pz)

σv (px, py, pz) → (px,−py, pz)

σ
′

v (px, py, pz) → (− 1
2px +

√
3
2 py,

√
3
2 px + 1

2py, pz)

σ
′′

v (px, py, pz) → (− 1
2px −

√
3
2 py,−

√
3
2 px + 1

2py, pz)

By inspection, the matrices that carry out the same transformations are:

• E(px, py, pz) = (px, py, pz)


1 0 0

0 1 0

0 0 1

 = (px, py, pz)

• C+
3 (px, py, pz) = (px, py, pz)


− 1

2 −
√
3
2 0

√
3
2 − 1

2 0

0 0 1

 = (− 1
2px +

√
3
2 py,−

√
3
2 px − 1

2py, pz)

• C−
3 (px, py, pz) = (px, py, pz)


− 1

2

√
3
2 0

−
√
3
2 − 1

2 0

0 0 1

 = (− 1
2px −

√
3
2 py,

√
3
2 px − 1

2py, pz)

• σv(px, py, pz) = (px, py, pz)


1 0 0

0 −1 0

0 0 1

 =
(
px −py pz

)

• σ
′

v(px, py, pz) = (px, py, pz)


− 1

2

√
3
2 0

√
3
2

1
2 0

0 0 1

 = (− 1
2px +

√
3
2 py,

√
3
2 px + 1

2py, pz)

• σ
′′

v (px, py, pz) = (px, py, pz)


− 1

2 −
√
3
2 0

−
√
3
2

1
2 0

0 0 1

 = (− 1
2px −

√
3
2 py,−

√
3
2 px + 1

2py, pz)

Collecting together the six matrix representatives, we see that they share a common block diagonal
form (a square matrix is said to be block diagonal if all the elements are zero except for a set of
submatrices lying along the diagonal):

19



Table 5.2: Fully reduced representations of the C3v point group.

g E C+
3 C−

3 σv σ
′

v σ
′′

v

Γ(1)(g) (1) (1) (1) (1) (1) (1)

Γ(2)(g)

1 0

0 1

 − 1
2 −

√
3
2

√
3
2 − 1

2

  − 1
2

√
3
2

−
√
3
2 − 1

2

 1 0

0 −1

 − 1
2

√
3
2

√
3
2

1
2

  − 1
2 −

√
3
2

−
√
3
2

1
2



Γ(E) Γ(C+
3 ) Γ(C−

3 )


1 0 0

0 1 0

0 0 1



− 1

2 −
√
3
2 0

√
3
2 − 1

2 0

0 0 1




− 1
2

√
3
2 0

−
√
3
2 − 1

2 0

0 0 1


�

Γ(σv) Γ(σ
′

v) Γ(σ
′′

v )


1 0 0

0 −1 0

0 0 1



− 1

2

√
3
2 0

√
3
2

1
2 0

0 0 1




− 1
2 −

√
3
2 0

−
√
3
2

1
2 0

0 0 1


A block diagonal matrix can be written as the direct sum of the matrices that lie along the diagonal.
In the case of the C3v matrix representation, each of the matrix representatives may be written as
the direct sum of a 1× 1 matrix and a 2× 2 matrix.

Γ(3)(g) = Γ(1)(g)⊕ Γ(2)(g)

in which the bracketed superscripts denote the dimensionality of the matrices. Separation of the
original representation into representations of lower dimensionality is called reduction of the represen-
tation. The block-diagonal form reflects the fact that none of the symmetry operations interconvert
z with x or y. z is effectively isolated, and forms its own 1-dimensional representation. The reduced
representations are shown in Table 5.2.

The reason why this result is useful in group theory is that the two sets of matrices Γ(1)(g) and Γ(2)(g)
also satisfy all of the requirements for a matrix representation. Each set contains the identity and
an inverse for each member, and the members multiply together associatively according to the group
multiplication table.¶

¶The 1×1 representation in which all of the elements are equal to 1 is sometimes called the unfaithful representation,
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5.3 Matrix representation of the C3v point group using the s orbitals on
N and H in the ammonia molecule

In this example we stick with the C3v point group, but we choose a different basis, the set of s
orbitals on the four atoms, (sN ,s1,s2,s3). We would, of course, include the p orbitals on N as well
in any meaningful calculation, but our purpose here is just to illustrate the machinery. Just as we
did with the basis of cartesian vectors in the previous example, we need to consider what happens
to this basis when it is acted on by each of the symmetry operations in the C3v point group, and
determine the matrices that would be required to produce the same effect. The basis set and the
symmetry operations in the C3v point group are summarised in the figure below:

The effects of the symmetry operations on our chosen basis are as follows:

E (sN , s1, s2, s3) → (sN , s1, s2, s3)

C+
3 (sN , s1, s2, s3) → (sN , s2, s3, s1)

C−
3 (sN , s1, s2, s3) → (sN , s3, s1, s2)

σv (sN , s1, s2, s3) → (sN , s1, s3, s2)

σ
′

v (sN , s1, s2, s3) → (sN , s2, s1, s3)

σ
′′

v (sN , s1, s2, s3) → (sN , s3, s2, s1)

By inspection, the matrices that carry out the same transformations are:

• E(sN , s1, s2, s3) = (sN , s1, s2, s3)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = (sN , s1, s2, s3)

since it satisfies the group properties in a fairly trivial way without telling us much about the symmetry properties of
the group.
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• C+
3 (sN , s1, s2, s3) = (sN , s1, s2, s3)


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 = (sN , s2, s3, s1)

• C−
3 (sN , s1, s2, s3) = (sN , s1, s2, s3)


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 = (sN , s3, s1, s2)

• σv(sN , s1, s2, s3) = (sN , s1, s2, s3)


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 = (sN , s1, s3, s2)

• σ
′

v(sN , s1, s2, s3) = (sN , s1, s2, s3)


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 = (sN , s2, s1, s3)

• σ
′′

v (sN , s1, s2, s3) = (sN , s1, s2, s3)


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 = (sN , s3, s2, s1)

These six matrices therefore form a representation for the C3v point group in the (sN , s1, s2, s3)
basis. We can build a group multiplication table, precisely analogous to Table 3.1, based on the
representative matrices rather than the operations. To illustrate this, consider the matrix products
below, which corresponds to the red and yellow shaded squares in Table 3.1:

Γ(σvC
+
3 ) = Γ(σv)Γ(C

+
3 ) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 = Γ(σ
′′

v )
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Γ(C+
3 σv) = Γ(C+

3 )Γ(σv) =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 = Γ(σ
′

v)

With a little work, you can show that, just like the operations themselves, the set of transformation
matrices forms a group under the operation of matrix multiplication. Specifically:

1. The set includes the identity operation E (the ‘do nothing’� operation).

2. The combination of any pair of elements is also an element of the group (the group property,
or closure). In fact, matrix representatives multiply together to give new representatives in
exactly the same way as the corresponding symmetry operations combine. In the example
above, the product of the matrix representatives of C+

3 and σv gives the representative of σ′′

v .

3. Every operation has an inverse, which is also a member of the group. For example, the inverse
of a reflection is another reflection, identical to the first, and it turns out that the representative
matrices for the reflections are all self-inverses. The inverse of a rotation matrix is another
rotation matrix corresponding to a rotation of the opposite sense to the first (i.e. Γ(C+

3 ) is
the inverse of Γ(C−

3 ) and vice versa.

4. The multiplication is associative: this is automatically satisfied by the rules of matrix multi-
plication: A(BC) = (AB)C.

If we look closely at the representative matrices generated in section 5.3, we note again that they
all take the same block diagonal form (see shading).

Γ(E) Γ(C+
3 ) Γ(C−

3 )


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0




1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 �
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Γ(σv) Γ(σ
′

v) Γ(σ
′′

v )


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 �

Γ(4)(g) = Γ(1)(g)⊕ Γ(3)(g)

Recall that the original four-dimensional representation had the s orbitals (sN , s1, s2, s3) of ammonia
as its basis. The first set of reduced matrices, Γ(1)(g), forms a one-dimensional representation with
(sN ) as its basis. Again, the block-diagonal form reflects the physical fact that none of the symmetry
operations interconvert sN with any of s1, s2, s3. The second set, Γ(3)(g) forms a three-dimensional
representation with the basis (s1, s2, s3). Separation of the original representation into represen-
tations of lower dimensionality is called reduction of the representation. The two reduced repre-
sentations are shown below: The 1-dimensional representation is spanned by sN , the 3-dimensional
representation is spanned by by (s1, s2, s3)

Table 5.3: Representations of the C3v point group using the (s1, s2, s3) basis.

g E C+
3 C−

3 σv σ
′

v σ
′′

v

Γ(1)(g) (1) (1) (1) (1) (1) (1)

Γ(3)(g)


1 0 0

0 1 0

0 0 1



0 0 1

1 0 0

0 1 0



0 1 0

0 0 1

1 0 0



1 0 0

0 0 1

0 1 0



0 1 0

1 0 0

0 0 1



0 0 1

0 1 0

1 0 0



�

The logical next step is to investigate whether or not the three dimensional representation Γ(3)(g)
can be reduced any further. As it stands, the matrices making up this representation are not in
block diagonal form so the representation is not reducible (the matrices representing E and σv are
in the same block diagonal form, but in order for a representation to be reducible all of the matrix
representatives must be in the same block diagonal form). However, we may be able to carry out
a similarity transformation to a new representation spanned by a new set of basis functions (made
up of linear combinations of (s1, s2, s3)), which transforms the matrices of Γ(3)(g) in Table 5.3 to a
block diagonal form, which then is reducible.
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5.4 Similarity transforms
Suppose we have a basis set (x1, x2, x3, . . . , xn), and we have determined the matrix representatives
for the basis in a given point group. There is nothing particularly special about the basis set we have
chosen, and we could equally well have used any set of linear combinations of the original functions
(provided the combinations were linearly independent). The matrix representatives for the two ba-
sis sets will certainly be different, but they are related by a similarity transform. Consider a basis
set (x

′

1, x
′

2, x
′

3, . . . , x
′

n), in which each basis function x
′

i is a linear combination of our original basis
(x1, x2, x3, . . . , xn).

x
′

j =
∑

i xicij = x1c1j + x2c2j + . . .

The cji appearing in the sum are coefficients; cij is the coefficient multiplying the original basis
function xi in the new linear combination basis function x

′

j . We could also represent this transfor-
mation in terms of a matrix equation x′

= xC:

(x
′

1, x
′

2, x
′

3, . . . , x
′

n) = (x1, x2, x3, . . . , xn)


c11 c12 . . . c1n

c21 c22 . . . c2n . . . . . . . . . . . .

cn1 cn2 . . . cnn


Now we look at what happens when we apply a symmetry operation g to our two basis sets. If Γ(g)
and Γ

′
(g) are matrix representatives of the symmetry operation in the x and x′ bases, then we have:

gx = xΓ(g)

gx
′
= x

′
Γ

′
(g)

gxC = xCΓ
′
(g) (using x

′
= xC)

gxCC−1 = gx = xΓ(g) = xCΓ
′
(g)C−1

We can therefore identify the similarity transform relating Γ(g), the matrix representative in our
original basis, to Γ

′
(g), the representative in the transformed basis. The transform depends only on

the matrix of coefficients used to transform the basis functions.

Γ(g) = CΓ
′
(g)C−1

Γ
′
(g) = C−1Γ(g)C

We will learn how to generate the required linear combinations later in Section 6.4, but for now they
are given below:
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s
′

1 = 1√
3
(s1 + s2 + s3) s

′

2 = 1√
6
(2s1 − s2 − s3) s

′

3 = 1√
2
(s2 − s3)

The linear combinations of basis functions that convert a matrix representation into block diagonal
form, allowing reduction of the representation, are called symmetry-adapted linear combinations or
SALCs. In matrix form:

(s
′

1, s
′

2, s
′

3) = (s1, s2, s3)C = (s1, s2, s3)


1√
3

2√
6

0

1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2


The matrices in this new representation can be generated using the expression Γ

′
(g) = C−1Γ(g)C,

and are collected in Table 5.4.

Table 5.4: Representative matrices in the transformed basis.

E C+
3 C−

3
1 0 0

0 1 0

0 0 1



1 0 0

0 − 1
2 −

√
3
2

0
√
3
2 − 1

2



1 0 0

0 − 1
2

√
3
2

0 −
√
3
2 − 1

2

 �

σv σ
′

v σ
′′

v
1 0 0

0 1 0

0 0 −1



1 0 0

0 − 1
2

√
3
2

0
√
3
2

1
2



1 0 0

0 − 1
2 −

√
3
2

0 −
√
3
2

1
2

 �

Each matrix is now in block diagonal form, and so the 3 × 3 representation can now be further
reduced into the direct sum of a 1 × 1 representation spanned by (s′1) and a 2 × 2 representation
spanned by (s

′

2, s
′

3) (Table 5.5). The complete set of reduced representations obtained from the
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original 4-dimensional representation is:

Table 5.5: Irreducible representations of C3v spanned by the (sN , s
′

1, s
′

2, s
′

3) basis.

basis E C+
3 C−

3 σv σ
′

v σ
′′

v

sN Γ(1)(g) (1) (1) (1) (1) (1) (1)

s
′

1 Γ(1)(g) (1) (1) (1) (1) (1) (1)

(s
′

2, s
′

3) Γ(2)(g)

1 0

0 1

 − 1
2 −

√
3
2

√
3
2 − 1

2

  − 1
2

√
3
2

−
√
3
2 − 1

2

 1 0

0 −1

 − 1
2

√
3
2

√
3
2

1
2

  − 1
2 −

√
3
2

−
√
3
2

1
2



�

Note that the 2-dimensional representation is precisely the same as the one we derived for the set
of p orbitals on the central atom in Table 5.2. This is not a coincidence - the set of matrices in
Γ2(g) is somehow a fundamental property of the group, and none of the three representations above
can be reduced any further; they are therefore called irreducible representations, or ‘irreps’, of the
point group. The definition of an irrep is one that cannot be converted to a block-diagonal form by
a similarity transformation.

5.5 Characters of representations and classes
Comparing the representative 3 × 3 matrices in Tables 5.3 and 5.4, we reiterate the obvious point
that the similarity transform has changed the representation. However, one feature of each matrix
that is not affected by the similarity transformation is their trace (the sum of the diagonal elements).
So for example, the trace of Γ(E) is 3 in both tables, the trace of Γ(C+

3 ) is 0 and the trace of Γ(σv)
is 1. The trace of Γ(g) is usually referred to as the character of the representation, χg, under the
symmetry operation g. The characters of a matrix representation are often just as useful than the
matrix representatives themselves, and they are certainly easier to deal with.

The characters of the representations under the symmetry operations C+
3 and C−

3 are the same (0),
as are the characters for σv, σ′

v and σ
′′

v (1). This reflects the fact that they are similar kinds of
operation: we say that the two C3 operations belong to the same class, and the three σv operations
belong to a different class. Formally, two operations, R and R

′ , are members of the same class if
there is a symmetry operation in the group, S, such that:

R
′
= S−1RS (5.5.1)

The two operations, R and R
′ , are then said to be conjugate. For example, from the group multi-

plication table, Table 3.1, we see that
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σ−1
v C+

3 σv = σv(C
+
3 σv) = σvσ

′

v = C−
3 (5.5.2)

The two one-dimensional irreps spanned by sN and s
′

1 in Table 5.5 are identical. This means that
sN and s

′

1 have the ‘same symmetry’, transforming in the same way under all of the symmetry
operations of the point group and forming bases for the same matrix representation. More formally,
they are said to belong to the same symmetry species.

There are several different ways of expressing the symmetry of a function: the following statements
about a function f all mean the same thing.

“f has E symmetry”

“f transforms as E”

“f has the same symmetry as E”

“f forms a basis for the E irrep”

5.6 Character tables
There is only a limited number of ways in which an arbitrary function can transform under the
symmetry operations of a group, giving rise to a limited number of symmetry species, which are
identified by the collection of characters for the different classes of symmetry operation. A character
table summarises the behaviour of all of the possible irreps of a group under each of the symmetry
operations of the group. The character table for C3v is shown below.

C3v E 2C3 3σv h = 6

A1 1 1 1 z x2 + y2, z2

A2 1 1 –1 Rz

E 2 –1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

The various sections of the table are as follows:

1. The first element in the table gives the name of the point group, sometimes in both Schoenflies
(C3v) and Hermann-Mauguin (3m) notation.

2. Along the first row are the symmetry operations of the group, E, 2C3 and 3σv, followed by the
order h of the group. Because operations in the same class have the same character, symmetry
operations are grouped into classes in the character table and not listed separately.

3. In the first column are the irreps of the group. In C3v there are only three possible irreps, A1,
A2 and E (the representation we considered above spans 2A1 + E). The number of irreps is
always equal to the number of classes of symmetry operation.

4. The characters of the irreps under each symmetry operation are given in the bulk of the table.
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5. The final column of the table lists a number of functions that transform as the various irreps of
the group. These are the Cartesian axes (x, y, z) the Cartesian products (z2, x2+y2, xy, xz, yz)
and the rotations (Rx, Ry, Rz).

The functions listed in the final column of the table are important in many chemical applications of
group theory, particularly in spectroscopy. For example, by looking at the transformation properties
of x, y and z (sometimes given in character tables as Tx, Ty, Tz) we can discover the symmetry
of translations along the x, y, and z axes. Similarly, Rx, Ry and Rz represent rotations about the
three Cartesian axes. As we shall see later, the transformation properties of x, y, and z can also
be used to determine whether or not a molecule can absorb a photon of x-, y- or z-polarised light
and undergo a spectroscopic transition. The Cartesian products play a similar role in determining
selection rules for Raman transitions, which involve two photons.

The labelling of irreps of a point group is based on the following conventions:

1. 1-dimensional representations are labelled A or B, depending on whether they are symmetric
(character +1) or antisymmetric (character –1) under rotation about the principal axis.

2. 2-dimensional representations are labelled E, 3-dimensional representations are labelled T .

3. In groups containing a centre of inversion, g and u labels (from the German gerade and
ungerade, meaning symmetric and antisymmetric) denote the character of the irrep under
inversion (+1 for g, -1 for u)

4. In groups with a horizontal mirror plane but no centre of inversion, the irreps are given prime
and double prime labels to denote whether they are symmetric (character +1) or antisymmetric
(character –1) under reflection in the plane.

5. If further distinction between irreps is required, subscripts 1 and 2 are used to denote the
character with respect to a C2 rotation perpendicular to the principal axis, or with respect to
a vertical reflection if there are no C2 rotations.

For example, the 1-dimensional irrep in the C3v point group is symmetric (has character +1) under
all the symmetry operations of the group. It therefore belongs to the irrep A1. The 2-dimensional
irrep has character 2 under the identity operation, -1 under rotation, and 0 under reflection, and
belongs to the irrep E.

Character tables for common point groups are given in Appendix B.

5.7 Shortcut to generating a representation
In many applications of group theory, we only need to know the characters of the representative
matrices, rather than the matrices themselves. We could generate the characters by generating the
representative matrices and then taking the trace, but there is a much simpler shortcut. All we
have to do is to look at the way the individual basis functions transform under each symmetry
operation: a non-zero element on the diagonal of the representative matrix (and hence in the trace)
will only appear if the basis function is mapped onto itself (or partially onto itself) by the operation
in question. So, for a given operation, step through each of the basis functions as follows:
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1. Add 1 to the character if the basis function is unchanged by the symmetry operation (i.e. the
basis function is mapped onto itself);

2. Add –1 to the character if the basis function changes sign under the symmetry operation (i.e
the basis function is mapped onto minus itself);

3. Add 0 to the character if the basis function moves when the symmetry operation is applied
(i.e the basis function is mapped onto something different from itself).

4. In some cases, a basis function is transformed into a linear combination of itself and another
basis function. A case in point is the px orbital in Section 5.2, which is transformed into
(− 1

2px +
√
3
2 py by the C+

3 operation i.e. − 1
2 of itself plus

√
3
2 of py. In this case, we add the

fraction of itself (− 1
2 ) to the character.

Try this for the s orbital basis we have been using for the C3v group. You should find you get the
same characters as we obtained from the traces of the matrix representatives.

6 Great and Little Orthogonality Theorems
In order to make full use of group theory, we need to develop a little more ‘machinery’. Specifically,
given a basis set (of atomic orbitals, for example) we need to establish:

1. How to determine the irreps spanned by the basis functions

2. How to construct the linear combinations of the original basis functions that transform as a
given irrep/symmetry species.

It turns out that both of these problems can be solved using the ‘Great Orthogonality Theorem’
(GOT for short). The GOT summarises a number of orthogonality relationships implicit in matrix
representations of symmetry groups, and may be derived in a somewhat qualitative fashion by con-
sidering these relationships in turn. The detailed derivation of the GOT is not critical for us, but it
underpins everything you will do with group theory.

6.1 Orthogonality relationships in group theory
Two vectors are said to be orthogonal if their dot product (i.e. the projection of one vector onto the
other) is zero. An example of a pair of orthogonal vectors is provided by the x and y cartesian unit
vectors: x.y = 0. A consequence of the orthogonality of x and y is that any general vector in the
xy plane may be written as a linear combination of these two basis vectors: r = ax+ by

Mathematical functions may also be orthogonal. Two functions, f1(x) and f2(x), are defined to
be orthogonal if the integral over their product is equal to zero i.e.

∫
f1(x)f2(x)dx = δ12. This

simply means that there must be ‘no net overlap’ between orthogonal functions, which is the same
as the orthogonality requirement for vectors, above. In the same way as for vectors, any general
function may be written as a linear combination of a suitably chosen set of orthogonal basis functions.

The irreps of a point group satisfy a number of orthogonality relationships:
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1. If corresponding matrix elements in all of the matrix representatives of an irrep are squared
and added together, the result is equal to the order of the group divided by the dimensionality
of the irrep. i.e.

∑
g

Γk(g)ijΓk(g)ij =
h

dk
(6.1.1)

where k labels the irrep, i and j label the row and column position within the irrep, h is the
order of the group, and dk is the order of the irrep.

For example, the order of the group C3v is 6. If we apply the above operation to the first
element in the matrices for the 2× 2 (E) irrep derived in Table 5.5, the result should be equal
to h

dk
= 6

2 = 3. Carrying out this operation gives:

(1)2 + (−1

2
)2 + (−1

2
)2 + (1)2 + (−1

2
)2 + (−1

2
)2 = 1 +

1

4
+

1

4
+ 1 +

1

4
+

1

4
= 3

2. If instead of summing the squares of matrix elements in an irrep, we sum the product of two
different elements from within each matrix, the result is equal to zero. i.e.

∑
g

Γk(g)ijΓk(g)i′ j′ = 0 (6.1.2)

where i 6= i
′ and/or j 6= j

′

If we perform this operation using the two elements in the first row of the 2-dimensional irrep
used in step 1, we get:

(1)(0) + (−1

2
)(−

√
3

2
) + (−1

2
)(

√
3

2
) + (1)(0) + (−1

2
)(

√
3

2
) + (−1

2
)(−

√
3

2
)

=0 +

√
3

4
−

√
3

4
+ 0−

√
3

4
+

√
3

4
= 0

3. If we sum the product of two elements from the matrices of two different irreps k and m, the
result is equal to zero:

∑
g

Γk(g)ijΓm(g)i′ j′ = 0 (6.1.3)

where there is now no restriction on the values of the indices i, j, i′ , j′ (apart from the rather
obvious restriction that they must be less than or equal to the dimensions of the irrep). Per-
forming this operation on the first elements of the A1 and E irreps we derived for C3v gives:

(1)(1) + (1)(−1

2
) + (1)(−1

2
) + (1)(1) + (1)(−1

2
) + (1)(−1

2
) = 1− 1

2
− 1

2
+ 1− 1

2
− 1

2
= 0
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We can combine Equations 6.1.1, 6.1.2 and 6.1.3 into one general equation, the Great Orthogonality
Theorem, or GOT ‖.

∑
g

Γk(g)ijΓm(g)i′ j′ =
h√
dkdm

δkmδii′ δjj′ (6.1.4)

For most applications we don’t actually need the full power of the Great Orthogonality Theorem.
A little mathematical trickery transforms Equation 6.1.4 into the Little Orthogonality Theorem (or
LOT), which is expressed in terms of the characters of the irreps rather than the matrix elements
of the irreps themselves. ∑

g

χk(g)χm(g) = hδkm (6.1.5)

Recall that the characters for two symmetry operations in the same class are the same; we can
therefore rewrite the sum over symmetry operations as a sum over classes.

∑
C

nCχk(C)χm(C) = hδkm (6.1.6)

where nC is the number of symmetry operations in class C.

if we set k = m in either of the last equations, we find that the sum of the squares of the characters
for any irrep is equal to the order of the group, h:

∑
g

χ2
k(g) =

∑
C

nCχ
2
k(C) = h (6.1.7)

Further useful results that emerge from the LOT are:

1. The number of irreducible representations of the group is equal to the number of classes of
operation. This means that all character tables are square (same number of rows as columns)

2. The sum of the squares of the characters of the i different irreps under the identity operation
(χ(E)) equals the order of the group:

∑
i

χ2
i (E) = h (6.1.8)

6.2 Generating character tables from the LOT
You might have wondered where the character tables shown in Section 5.6 and in the appendix
actually come from. And how do we know whether there are complete - are they more irreps to
find? The process for generating a character table, in this case C4v, is shown below.

‖The δij appearing in Equation 6.1.4 are called Dirac delta functions. They are equal to 1 if i = j and 0 otherwise.
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Figure 3: Classes of symmetry operation in C4v.

1. There are five classes of symmetry operation for C4v: E, 2C4, C2, 2σv and 2σd, giving a total
order of 8. If there are five classes, there must be precisely five irreps to find.

2. The sum of the squares of the character under E must equal the order of the group, in this
case 8. χ(E) must be positive so the only way we can achieve this with five irreps is for χ(E)
to be 1, 1, 1, 1 and 2.

3. For each irrep, we have: ∑
C

nCχ
2
k(C) = h (6.2.1)

This means that χ2
k(E) + 2χ2

k(C4) + χ2
k(C2) + 2χ2

k(σv) + 2χ2
k(σd) = 8.

4. For 1-dimensional irreps (i.e. those with χk(E) = 1), the only way we can achieve this is if
each of the other classes has χ = ±1.

5. One of these must be the totally symmetric representation with all χ = +1

6. The three remaining 1-dimensional irreps must be orthogonal to the totally symmetric one and
to each other (Equation 6.1.5), and the only way we can do this if the characters of precisely
two of the three classes with two operations (C4, σv, σd) are -1 and the remaining one is +1.
These constraints give us the four 1-dimensional irreps shown in the character table, Table 6.6.

7. The fifth irrep is 2-dimensional, with χ(E) = 2. The only possible combinations consistent
with

∑
C nCχ

2
k(C) = 8 are (a) χ(C2) = ±2, all others are zero and (b) two of C4, σv and σd

have χ = −1, the others are zero. Option (b) is not orthogonal to the totally-symmetric irrep
(or indeed to any of the other 1-dimensional irreps) so we are left only with possibility (a).
χ(C2) must then be -2, not +2, to satisfy orthogonality with the 1-dimensional irreps (all of
which have χ(C2) = 1).

So, finally, we arrive at the complete character table for C4v. The labels are added afterwards
(following the conventions set out in Section 5.5), but the irreps themselves emerge logically from
the LOT.

6.3 The LOT and the reduction formula
In Section 5.4 we discovered that we can often carry out a similarity transform on a general matrix
representation so that all the representatives end up in the same block diagonal form. When this
is possible, each set of sub-matrices also forms a valid matrix representation of the group. If none
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Table 6.6: Character Table for C4v

C4v E 2C4 C2 2σv 2σd
A1 1 1 1 1 1

A2 1 1 1 -1 –1

B1 1 –1 1 1 -1

B2 1 –1 1 –1 1

E 2 0 –2 0 0

of the sub-matrices can be reduced further by carrying out another similarity transform, they are
said to form an irreducible representation of the point group. An important property of matrix rep-
resentatives (see Section 5.5) is that their character is invariant under a similarity transform. This
means that the character of the original representatives must be equal to the sum of the characters
of the irreps into which the representation is reduced. e.g. if we consider the representative for the
C+

3 symmetry operation in our NH3 example, we have:


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0


similarity transform−→


1 0 0 0

0 1 0 0

0 0 − 1
2 −

√
3
2

0 0
√
3
2 − 1

2

 = (1)⊕ (1)⊕

− 1
2 −

√
3
2

√
3
2 − 1

2



χ = 1 χ = 1 χ = 1 + 1 + (−1) = 1

It follows that we can write the characters for a general representation Γ(g), which may be the sum
of several irreps, in terms of the characters of the irreps Γk(g) into which it can be reduced.

χ(g) =
∑
k

nkχk(g) (6.3.1)

where the coefficients nk in the sum are the number of times each irrep appears in the representation.

Expressed in terms of classes rather than individual operations:

χ(C) =
∑
k

nkχk(C) (6.3.2)

This means that in order to determine the irreps spanned by a given basis, all we have to do is
determine the coefficients nk in the above equation. This is where the Little Orthogonality Theorem
comes in handy. If we take the LOT in the form of Equation ??, and multiply each side through by
nk, we get
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∑
C

nCnkχk(C)χm(C) = hnkδkm (6.3.3)

Summing both sides of the above equation over k gives

∑
C

nC

(∑
k

nkχk(C)

)
χm(C) = h

∑
k

nkδkm (6.3.4)

noting that δkm is only non-zero (and equal to 1) when k = m.

∑
C

nC

(∑
k

nkχk(C)

)
χm(C) = hnm (6.3.5)

Substituting Equation 6.3.2 into the brackets on the left hand side gives:

∑
C

nCχ(C)χm(C) = hnm (6.3.6)

where note now that χ(C) is the general representation, which may be a sum of several irreps.

Dividing both sides through by h (the order of the group), gives us an expression for the coefficient
nm in terms of the characters χ(C) of the original representation and the characters χm(C) of the
mth irrep.

nm =
1

h

∑
C

nCχ(C)χm(C) (6.3.7)

As an example, in Section 5.4 we showed, with some effort, that the matrix representations for
the C3v point group using the (sN , s1, s2, s3) could be reduced to two identical 1-dimensional irreps
(Γ(1)(g)) and a 2-dimensional irrep, Γ(2)(g), Table 5.5. If we take the traces of the representative
matrices, we see that the characters of Γ(1)(g) are all 1, so it corresponds to the A1 representation,
while the characters of Γ(2)(g) correspond to those of the E irrep: the representation can be reduced
to the sum 2A1 + E.

We could have obtained the same result using Equation 6.3.7, starting from the original 4 × 4
representatives in Section 5.3. The characters, χ, are collected in the top row of the table below,
and the irreps of the C3v point group (A1, A2 and E) are given in the rows below. The top row
is clearly not one of the irreducible representations (irreps), so it must be reducible to a linear
combination of the irreps.
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C3v E 2C3 3σv

χ 4 1 2

Γ(A1) 1 1 1

Γ(A2) 1 1 -1

Γ(E) 2 -1 0

From 6.3.7, the number of times each irrep occurs in the reducible representation is therefore

n(A1) =
1

6
(1× 4× 1 + 2× 1× 1 + 3× 2× 1) = 2

n(A2) =
1

6
(1× 4× 1 + 2× 1× 1 + 3× 2×−1) = 0

n(E) =
1

6
(1× 4× 2 + 2× 1×−1 + 3× 2× 0) = 1

i.e. Our basis is spanned by 2A1 + E, as we found before.

6.4 Symmetry-adapted linear combinations
Once we know the irreps spanned by an arbitrary basis set, we can work out the appropriate linear
combinations of basis functions that transform the matrix representatives of our original representa-
tion into block diagonal form (i.e. the symmetry-adapted linear combinations, or SALCs). Each of
the SALCs transforms as one of the irreps of the reduced representation. We have already seen this in
our NH3 example. The two linear combinations of A1 symmetry were sN and s′1 = 1√

3
(s1+ s2+ s3),

both of which are symmetric under all the symmetry operations of the point group. We also chose
another pair of functions, 1√

6
(2s1 − s2 − s3) and 1√

2
(s2 − s3), which together transform as the sym-

metry species E. We wil now see how to generate these SALCs using projection operators.

To generate a SALC from a given basis function that transforms as irrep k, we use the following
formula:

f
′

i =
∑
g

χk(g)(gfi) (6.4.1)

Here, fi is a basis function (s1 of the (s1, s2, s3) basis, for example), and gfi is the result of applying
the operation g to it. For example, the C+

3 operation converts s1 into s2. χk(g) is the character of
the operation g for irrep k.

The way in which this operation is carried out will become much more clear if we work through an
example. We can break down the above equation into a fairly straightforward ‘recipe’� for generating
SALCs:

1. Make a table with rows labelled by the basis functions and columns labelled by the symme-
try operations of the molecular point group. In each row, show the effect of the symmetry
operations on a particular basis function (this is the (gfi) part of Equation 6.4.1).
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2. For each irrep in turn, multiply each member of the table by the character of the appropriate
symmetry operation (we now have χk(g)gfi for each operation). Summing over the columns
(symmetry operations) generates all the SALCs that transform as the chosen irrep.

3. Normalise the SALCs.

Earlier (see Section 5), we worked out the effect of all the symmetry operations in the C3v point
group on the (sN , s1, s2, s3) basis.

E (sN , s1, s2, s3) → (sN , s1, s2, s3)

C+
3 (sN , s1, s2, s3) → (sN , s2, s3, s1)

C−
3 (sN , s1, s2, s3) → (sN , s3, s1, s2)

σv (sN , s1, s2, s3) → (sN , s1, s3, s2)

σ
′

v (sN , s1, s2, s3) → (sN , s2, s1, s3)

σ
′′

v (sN , s1, s2, s3) → (sN , s3, s2, s1)

This is all we need to construct the table described in step 1 above.

fi Efi C+
3 fi C−

3 fi σvfi σ
′

vfi σ
′′

v fi

sN sN sN sN sN sN sN

s1 s1 s2 s3 s1 s2 s3

s2 s2 s3 s1 s3 s1 s2

s3 s3 s1 s2 s2 s3 s1

The character table C3v, listed by operation rather than by class, is:

C3v E C+
3 C+

3 σv σ
′

v σ
′′

v

Γ(A1) 1 1 1 1 1 1

Γ(A2) 1 1 1 -1 -1 -1

Γ(E) 2 -1 -1 0 0 0

To determine the SALCs of A1 symmetry, we multiply the rows of gfi through by the characters of
the A1 irrep (all of which take the value 1). Summing over the rows gives

sN + sN + sN + sN + sN + sN = 6sN

s1 + s2 + s3 + s1 + s2 + s3 = 2(s1 + s2 + s3)

s2 + s3 + s1 + s3 + s1 + s2 = 2(s1 + s2 + s3)

s3 + s1 + s2 + s2 + s3 + s1 = 2(s1 + s2 + s3)

We appear to have four linear combinations, but the last three results are the same, irrespective of
whether we choose s1, s2 or s3, and they are (aside from the normalising factor which we can always
account for later) identical to the s′1 linear combination identified earlier.
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φ(1) = sN

φ(2) =
1√
3
(s1 + s2 + s3) = s

′

1

We now move on to determine the SALCs of E symmetry. Multiplying the rows of gfi by the
appropriate characters for the E irrep gives:

2sN − sN − sN + 0 + 0 + 0 = 0

a 2s1 − s2 − s3 + 0 + 0 + 0 = 2s1 − s2 − s3

b 2s2 − s3 − s1 + 0 + 0 + 0 = 2s2 − s3 − s1

c 2s3 − s1 − s2 + 0 + 0 + 0 = 2s3 − s1 − s2

We therefore appear to get three SALCs from s1, s2 and s3 (a, b, and c), from this procedure but
this can’t be correct because the number of SALCs must match the dimensionality of the irrep, in
this case two. The problem arises because the three SALCs above are not linearly independent: any
one of them can be written as a linear combination of the other two. To solve the problem, we
can combine the three SALCs to make two that are orthogonal to each other, a process known as
Schmidt orthogonalisation:

Let us choose one of the linear combinations, Φ(3) = a and seek a linear combination of b and c,
Φ(4) = b+ λc, that is orthogonal to it (i.e. we set Φ(3) · Φ(4) = 0):

a · (b+ λc) = (2s1 − s2 − s3) · (2s2 − s3 − s1 + λ (2s3 − s1 − s2)) = 0

(2s1 − s2 − s3) · ((−1− λ) s1 + (2− λ) s2 − (1 + 2λ) s3) = 0

2 (−1− λ)− 1 (2− λ)− 1 (1 + 2λ) = −3− 3λ = 0 =⇒ λ = −1

After normalisation, we have:

φ(3) =
1√
6
(2s1 − s2 − s3) = s

′

2

φ(4) =
1√
2
(s2 − s3) = s

′

3

These are precisely the linear combinations s′2 and s
′

3 that we used in Section 5.4

We now have all the machinery we need to apply group theory to a range of chemical problems.
In our first application, we will learn how to use molecular symmetry and group theory to help us
understand chemical bonding.
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7 Advanced applications: reduction formula and projection
operators.

7.1 The reduction formula
The reduction formula gives us a “handle turning” procedure for reducing the representation spanned
by a set of basis functions. The formula shown below looks abstract and somewhat impenetrable
when first encountered, but is actually quite simple to use in practice. It is expressed either in terms
of the individual symmetry operations, g (Equation ??), or in terms of the classes of symmetry
operation, C (Equation 6.3.7). In practice, we will always use the latter.

n(i) =
1

h

∑
g

χi(g)χr(g) =
1

h

∑
C

nCχi(C)χr(C) (7.1.1)

where:

n(i) = Number of times that the ith reducible representation

occurs in the representation χr that we are aiming to reduce.

h = Order of the group i.e. the number of operations in the group (this is not necessarily

equal to the number of classes of operation)∑
g

= A summation over all the operations g in the group.

If there is more than one operation in a given class we must remember to

include each operation in the summation.

χr(g) = Character of the reducible representation r under the symmetry operation g.

χi(g) = Character of the irreducible representation i under the symmetry operation g.

χr(C) = Character of the reducible representation r under the class of symmetry operation C.

nC = Number of operations in a given class.

7.2 Use of projection operators to deduce the form of SALCS
It is not always possible to deduce the form of a SALC by “matching” to a central atom orbital of
appropriate symmetry. There exists however a handle turning group theoretical procedure to deduce
the form of the SALCS. This uses so-called projection operators.
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ΨSALC
i = Piφa =

∑
g

χi(g)(gφa)

where:

ΨSALC
i = The wavefunction for the SALC belonging to the irreducible representation.

Pi = the projection operator for the ith irreducible representation

φa = one of the basis functions.∑
g

= A summation over all the operations g in the group.

gφa = The basis function generated by applying the operation g to basis function φa.

χi(g) = Character of the irreducible representation i under the symmetry operation g.

We saw (relatively) simple examples of how to use both of these in the context of NH3 in sections
6.3 and 6.4: here we explore some more advanced applications.

7.3 Example 1: the π-type MOs of C6H6

The point group of C6H6 is D6h, and the character table below looks very daunting, with 24 op-
erations. However, the specific problem that we are dealing with suggests a simplification. We are
interested here only in the linear combinations of pz orbitals that form the π system of benzene, and
all of these p orbitals (and therefore all linear combinations of them) are antisymmetric with respect
to reflection in the plane of the molecule (σh). From the character table, we can see that only half
of the irreps, B1g, B2g, E1g, A1u, A2u and E2u have negative characters for this operation, so we
can focus our attention on these.

We also know that the number of irreps is equal to the number of classes of operation, so if we have
halved the number of irreps, we might reasonably look for a simpler point group that has half the
number of classes. This brings us to the concept of Direct Product Groups.

Figure 4: Symmetry elements for D6h and the p(π) basis for benzene
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Table 7.7: Character Table for D6h

D6h E 2C6 2C3 C2 3C ′
2 3C ′′

2 i 2S3 2S6 σh 3σd 3σv
A1g 1 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 1 –1 –1 1 1 1 1 –1 –1

B1g 1 –1 1 –1 1 –1 1 –1 1 –1 1 –1

B2g 1 –1 1 –1 –1 1 1 –1 1 –1 –1 1

E1g 2 1 –1 –2 0 0 2 1 –1 –2 0 0

E2g 2 –1 –1 2 0 0 2 –1 –1 2 0 0

A1u 1 1 1 1 1 1 –1 –1 –1 –1 –1 –1

A2u 1 1 1 1 –1 –1 –1 –1 –1 –1 1 1

B1u 1 –1 1 –1 1 –1 –1 1 –1 1 –1 1

B2u 1 –1 1 –1 –1 1 –1 1 –1 1 1 –1

E1u 2 1 –1 –2 0 0 –2 –1 1 2 0 0

E2u 2 –1 –1 2 0 0 –2 1 1 –2 0 0

7.3.1 Direct Product Groups

If we have two groups, G and G′which have only the identity operation in common, and the elements
of G commute with those of G′ , we can construct a larger group, G′′ , based on the consecutive ap-
plication of an operation from one group and one from the other. To illustrate this, take the direct
product group of C3v (3 classes, E, C3 and σv) and Cs (2 classes, E and σh), which is D3h, which
has 6 classes (3 × 2). The S3 operation of D3h is, by definition, a combination of the C3 rotation
of C3v and the σh of Cs. Likewise, the C2 operation of D3h is a combination of σv of C3v and σh
of Cs. We can get the characters in the D3h character table by multiplying the characters in the
corresponding positions in the two sub-groups.

Table 7.8: Character Tables for C3v and Cs

C3v E 2C3 3σv h = 6 Cs E σh h = 2

A1 1 1 1 A
′ 1 1

A2 1 1 –1 A
′′ 1 –1

E 2 –1 0
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Table 7.9: Character Table for D3h, constructed as the direct product of the C3v and Cs groups.

D3h E(= EE) 2C3 = (C3E) 3σv(= σvE) σh(= Eσh) 2S3 = (C3σh) 3C2(= σvσh)

A
′

1 = A1A
′ 1 1 1 1 1 1

A
′

2 = A2A
′ 1 1 -1 1 1 -1

E
′
= EA

′ 2 -1 0 2 -1 0

A
′′

1 = A2A
′′ 1 1 -1 -1 -1 1

A
′′

2 = A1A
′′ 1 1 1 -1 -1 -1

E
′′
= EA

′′ 2 -1 0 -2 1 0

With somewhat more effort, we could build the character table of D6h from the direct product of
C6v and Cs. We can use this process in reverse: if we can identify a sub-group of the full point group
that contains all the information that is relevant to the problem in hand, we can save time by using
the sub-group. In the present case, the symmetry element in the Cs sub-group, σh, is not relevant
to the problem because we know from the outset that all the p orbitals must be antisymmetric with
respect to it.

The character table for C6v is shown below, and the bottom row shows the reducible representation
generated by the basis of six pz orbitals on the six carbons (using the shortcut defined in section 5.7
or, if you wish(!), by generating the full matrix representation and taking the traces).

Table 7.10: Character Table for C6v

C6v E 2C6 2C3 C2 3σd 3σv h = 12

A1 1 1 1 1 1 1 z,z2,x2 + y2

A2 1 1 1 1 –1 –1

B1 1 –1 1 –1 1 –1

B2 1 –1 1 –1 –1 1

E1 2 1 –1 –2 0 0 (x, y),(xz, yz)

E2 2 –1 –1 2 0 0 (xy, x2 − y2)

Γ(π) 6 0 0 0 0 2

7.3.2 Applying the reduction formula

• In evaluating the summation given in Equation 7.1.1 we deal with each class of symmetry
operation in turn. We multiply the character for Γ(π) by the character for the relevant irre-
ducible representation and then multiply by the number of operations in a given class. Thus
each term is a product of three numbers, and will be zero if any of the three is zero. In this
case we only need to worry about the E and σv operations because the other characters in
Γ(π) = 0:
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• We can check that we have obtained the correct answer by verifying that the characters for the
irreducible representations we have derived add up to the set of characters for the representation
we are trying to reduce.

• The n(i) must always be zero or integral. If they are not something has gone wrong somewhere!

n(A1) =
1

12
[(6× 1× 1) + (2× 1× 3)] = 1

n(A2) =
1

12
[(6× 1× 1) + (2× (−1)× 3)] = 0

n(B1) =
1

12
[(6× 1× 1) + (2×−1× 3)] = 0

n(B2) =
1

12
[(6× 1× 1) + (2× (1)× 3)] = 1

n(E1) =
1

12
[(6× 2× 1) + (2× 0× 3)] = 1

n(E2) =
1

12
[(6× 2× 1) + (2× 0× 3)] = 1

Thus in C6v symmetry, the p(π) SALCS for C6H6 transform as A1 +B2 +E1 +E2. Note that this
analysis tells us nothing at this stage about the form of the SALCs or about their relative energy
ordering. For that, we need to apply the projection operator.

7.3.3 Using the projection operator

Following the recipe set out in Section 6.4,

1. Make a table with rows labelled by the basis functions and columns labelled by the symmetry
operations of the molecular point group. In the rows, show the effect of the symmetry oper-
ations on the basis functions (again, C6v is used for simplicity - the results are identical to
D6h). We could do this for all six basis functions, but in this case we only need to do three.

Table 7.11: Results of different symmetry operations, gfi, on the (p1, p2, p3) basis of benzene

fi Efi C+
6 fi C−

6 fi C+
3 fi C−

3 fi C2fi σdfi σ
′

dfi σ
′′

d fi σvfi σ
′

vfi σ
′′

v fi

p1 p1 p6 p2 p5 p3 p4 p2 p4 p6 p1 p3 p5

p2 p2 p1 p3 p6 p4 p5 p1 p3 p5 p6 p2 p4

p3 p3 p2 p4 p1 p5 p6 p6 p2 p4 p5 p1 p3

2. For each irrep in turn, multiply each member of a row by the character of the corresponding
symmetry operation to generate χk(g)(gfi) for each operation and sum them.

Using the values of gfi generated by p1 (i.e. the first row of the table) and the characters of
the A1 representation, which are all +1 (see section 5.6).
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Φ(A1) = p1 + p6 + p2 + p5 + p3 + p5 + p2 + p4 + p6 + p4 + p1 + p3

= 2(p1 + p2 + p3 + p4 + p5 + p6)

Following the same process for the B2 representation, we have χ(E) = 1, χ(C6) = −1, χ(C3) =
1, χ(C2) = −1, χ(σd) = −1, χ(σv) = 1).

Φ(B2) = p1 − p6 − p2 + p5 + p3 − p4 − p2 − p4 − p6 + p1 + p3 + p5

= 2(p1 − p2 + p3 − p4 + p5 − p6)

Following the same process for the E1 representation (χ(E) = 2, χ(C6) = 1, χ(C3) = −1, χ(C2) =
−2, χ(σd) = 0, χ(σv) = 0), we will need to find two orthogonal linear combinations. Taking
the first row (p1) first:

Φ(E1a) = 2p1 + p6 + p2 − p5 − p3 − 2p4

= (2p1 + p2 − p3 − 2p4 − p5 + p6)

the orthogonal combination then comes from summing the results using the second and third
rows (Schmidt orthogonalisation):

Φ(E1b) = (3p2 + 3p3 − 3p5 − 3p6)

and for E2 (χ(E) = 2, χ(C6) = −1, χ(C3) = −1, χ(C2) = 2, χ(σd) = 0, χ(σv) = 0), the first
row gives:

Φ(E2a) = 2p1 − p6 − p2 − p5 − p3 + 2p4

= (2p1 − p2 − p3 + 2p4 − p5 − p6)

and the orthogonal combination (in this case from the difference of the second and third rows):

Φ(E2b) = (3p2 − 3p3 + 3p5 − 3p6)
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3. Finally, normalise the SALCs.

Φ(A1) =
1√
6
(p1 + p2 + p3 + p4 + p5 + p6)

Φ(B2) =
1√
6
(p1 − p2 + p3 − p4 + p5 − p6)

Φ(E1a) =
1

2
√
3
(2p1 + p2 − p3 − 2p4 − p5 + p6)

Φ(E1b) =
1

2
(p2 + p3 − p5 − p6)

Φ(E2a) =
1

2
√
3
(2p1 − p2 − p3 + 2p4 − p5 − p6)

Φ(E2b) =
1

2
(p2 − p3 + p5 − p6)

Figure 5: SALCs for the π orbitals of benzene, with the orbital of the same symmetry at an invariant
point shown in red. Note that the p orbitals are viewed from above, so only the upper lobe is visible.
A black circle therefore indicates a p orbital with the lobe with positive phase above the molecular
plane, a white circle a p orbital with positive phase below the molecular plane.

Even after we have identified that we can save time by using the simpler C6v character table, the
application of the projection operator is still somewhat laborious. Fortunately, there is a shortcut
that works (most of the time!). If we look at the right-hand column of the character table, we are
given the symmetry properties of a set of orbitals on an invariant point: in C6v, any point along
the principal axis is invariant because it unchanged by any of the symmetry operations. So we can
immediately identify the fact that the A1 linear combination must ’match’ the symmetry properties
of an s orbital placed anywhere on the principal axis (an s orbital on an invariant point is always
totally symmetric). Likewise, the two components of the E1 linear combination ’match’ the px and
py orbitals, and the two components of E2 ’match’ dxy and dx2−y2 .

The atomic orbitals at the invariant point are shown in red in Figure 5. With this knowledge,
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p1 p2 p3 p4 p5 p6

θ 0 π/3 2π/3 π 4π/3 5π/3

cos θ 1 1
2 − 1

2 -1 − 1
2

1
2

sin θ 0 −
√
3
2 −

√
3
2 0

√
3
2

√
3
2

cos 2θ 1 − 1
2 − 1

2 1 − 1
2 − 1

2

sin 2θ 0
√
3
2 −

√
3
2 0

√
3
2 −

√
3
2

we can predict the phases of the atomic components on the carbon atoms by matching the positive
(black) phases on the carbon atoms with the red phases of the orbital on the invariant point. For E1a,
for example, the phases in the upper half are positive while the phases on the lower half are negative.

We can push this technique even further, and predict the relative size of the coefficients. Note that
in E1a, the coefficient of p1 (the top-most atom) is twice as large as those on the neighbouring atoms
(p2 and p6). Qualitatively, this maps on to the observation that the red p orbital on the invariant
point in E1a points directly at p1, but less directly at p2 and p6. We can quantify this by noting
that the p orbital on the invariant point (in red) varies as cosθ, and evaluating this function at the
angular coordinates of p1 to p6 (taking the former as 0◦) delivers the (un-normalised) coefficients
in E1a. Likewise, the d orbital at the invariant point in E2a varies as cos 2θ, and evaluating this
function at the positions of the atoms delivers the required coefficients.

The limitations of this approach become apparent when we consider the final orbital, B2, for which
there is nothing in the right-hand column of the character table. In fact, this orbital matches the
fx(x2−3y2) orbital, but f orbitals are not always included in character tables (and even if they were,
few people remember what the fx(x2−3y2) orbital looks like!). So it is good to have the projection
operator as a back-up for tricky cases.

Finally, we need to convert these C6v irreducible representations back to those of the full D6h

character table. The missing information is simply whether we add a g or u to the labels of the
irreps. The relevant information is captured in the descent in symmetry table, Table 7.12.

Table 7.12: Descent in symmetry from D6h to C6v.

D6h A1g A2g B1g B2g E1g E2g A1u A2u B1u B2u E1u E2u

C6v A1 A2 B1 B2 E1 E2 A2 A1 B2 B1 E1 E2

We see that A1 in C6v correlates with A1g and A2u in D6h. However, the A1 SALC, like all the
others from the p(π) basis) is antisymmetric with respect to reflection in σh (χ(σu) = −1 (Table
7.7), confirming that it is A2u and not A1g. Likewise, B2 correlates with B2g and B1u, but the
antisymmetry under σh identifies it as the former. Similar logic dictates that E1 and E2 correlate
with E1g and E2u, respectively, and not E1u and E2g.

We could have reached the same conclusion by noting, as we did at the beginning, that all the
orbitals must be antisymmetric with respect to reflection in σh, which restricts us to B1g, B2g, E1g,
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A1u, A2u and E2u This type of information is usually collected in the descent in symmetry table,
Table 7.12, that is available in many books.

This is as far as we can go using symmetry alone. We can anticipate based on the number of
nodes in the SALCs that the energetic order will be A2u < E1g < E2u < B2g (0, 1, 2 and 3 nodes
perpendicular to the σh plane, respectively), but if we want to evaluate the energies of the orbitals
we need to resort to quantum mechanics in some form (Hückel theory, for example), and this a topic
for other courses (Bonding in Molecules, Valence, Quantum supp)

7.4 Example 2: the molecular orbitals of CH4

Consider next the problem of finding the irreducible representations spanned by the set of 4 H 1s
basis functions in the methane molecule. Each operation is represented by a (4× 4) matrix, but we
are only interested in the diagonal sum of the transformation matrix, the character.

Figure 6: Symmetry elements for a tetrahedron

Remembering that it is only when an atom is unshifted that it can contribute to this sum, the
characters χr(R) are given simply by the number of H atoms that are unshifted under each class
of symmetry operation. It is always the case that the character is the same for each symmetry
operation of a given class so we need inspect the effects of only one operation within each class. The
basis of the four 1s orbitals on the hydrogen atoms generates Γ(H1s).

7.4.1 Applying the reduction formula

Applying the formula (Equation 7.1.1) in the standard way, we get the following values of nm:
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Td E 8C3 3C2 6S4 6σd
A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1

E 2 –1 2 0 0 (2z2x2y2, x2y2)

T1 3 0 –1 1 –1 (Rx, Ry, Rz)

T2 3 0 –1 –1 1 (x, y, z) (xy, xz, yz)

Γ(H1s) 4 1 0 0 2

n(A1) =
1

24
[(4× 1× 1) + (1× 1× 8) + (0× 1× 3) + (0× 1× 6) + (2× 1× 6)] =1

n(A2) =
1

24
[(4× 1× 1) + (1× 1× 8) + (0× 1× 3) + (0× (−1)× 6) + (2× (−1)× 6)] =0

n(E) =
1

24
[(4× 2× 1) + (1× (−1)× 8) + (0× 2× 3) + (0× 0× 6) + (2× 0× 6)] =0

n(T1) =
1

24
[(4× 3× 1) + (1× 0× 8) + (0× (1)× 3) + (0× 1× 6) + (2× (−1)× 6)] =0

n(T2) =
1

24
[(4× 3× 1) + (1× 0× 8) + (0× (−1)× 3) + (0× (−1)× 6) + (2× 1× 6)] =1

Γ(H1s) =A1 + T2

7.4.2 The form of the SALCS for a tetrahedral system and the MO diagram for CH4

The projection operator technique is tedious to apply because the summation extends over each
operation and it is necessary to inspect the effects of each operation in turn. Thus for the Td point
group we would have to inspect the effects of all 24 operations in turn! We can again use the idea
of matching to orbitals on an invariant point to make life easier.

Inspection of the character table for the Td point group reveals that the p orbitals on the central
atom of a molecule such as CH4 (an invariant point) transform like T2. As always, an s orbital on
the invariant point transforms as A1. It is therefore possible to deduce the form of the T2 SALCS
simply by matching the phases of the H 1s orbitals to the phases (signs) of the three orthogonal p
orbitals. Likewise it is trivially obvious that the A1 SALC must be simply a completely in-phase
combination of H 1s orbitals.

In constructing the MO diagram for CH4 we then allow the C 2s orbital to interact with the A1 H
1s SALC and each C 2p orbital to interact with its matching T2 SALC. We have used group theory
to establish which linear combinations do not interact with each other: the overlap between the
A1 SALC on the H atoms and the T2 orbitals on C do not overlap, and so do not interact. What
group theory can not tell us is the extent of overlap between the a1 SALC on H4 and the T1 orbital
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Figure 7: SALCs of CH4

on C (2s) (beyond the fact that it is not necessarily zero). To get this information we need to go
a step further and use quantum mechanics (again, see Bonding in Molecules, Valence, Quantum
supp). However, using the simple concept that when two orbitals interact we get a bonding and an
antibonding combination, we can generate the qualitative MO diagram in Figure 8. There are two
occupied MOs of different energy, a picture that is confirmed by the observation of two bands in the
photo-electron spectrum.
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Figure 8: Molecular orbital diagram and photo-electron spectrum of CH4
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8 Degeneracy and descent in symmetry.
Degeneracy, where two or more orbitals/states/vibrations have the same energy, is intimately con-
nected with symmetry: specifically, degeneracy occurs when a rotation axis of order 3 or more (C3,
C4 etc.) is present. The connection between symmetry and degeneracy can be understood with the
following qualitative argument: a symmetry operation, by definition, leaves all observable properties
of the molecule, including its energy, unchanged. Therefore, if a symmetry operation converts one
orbital into another, either fully or partially, then the implication is that the two orbitals involved
necessarily have the same energy.

We have already seen this in action when we looked at the transformation properties of the three p
orbitals, px, py and pz in C3v symmetry in Section 5.2. There, the C+

3 operation converts px into
− 1

2px +
√
3
2 py, and so px and py must be degenerate. Indeed, we find that they form a basis for the

E representation of the group.

A logical place to start the discussion of degeneracy is therefore with the most symmetric of all
groups, the full rotation group, given the symbol R3. This is the point group for spherical objects,
including atoms, and so is useful for discussing atomic orbitals. The dimension of R3 is infinite: it
includes all possible rotations about the origin.

8.1 The full rotation group, R3, and atomic orbital wavefunctions
The wavefunction for any atomic orbital may be written in terms of polar co-ordinates r, θ, φ, and is
then separable into radial (R) and angular (Y ) parts: the latter are known as the spherical harmonics:

ψ(r, θ, φ) = R(r)Y ml

l (θ, φ)

The spherical harmonics have the general form:

Y ml

l (θ, φ) = Plml
(θ)eimlφ

All rotations belong to the same class, and therefore have the same characters - we can therefore
select the most convenient rotation axis (z) to explore the effects of rotations. Consider the effect
of rotating a set of degenerate atomic orbitals with ml = l, (l − 1) · · · − (l − 1),−l by an angle
α about the z axis: the function described by Plml

(θ)eimlφ will rotate into another described by
Plml

(θ)eiml(φ−α) = Plml
(θ)eimlφe−imlα. We can describe this by the transformation matrix:

(
Y l
l Y l−1

l . . . . . . Y −l
l

)

e−ilα 0 0 . . . 0

0 e−i(l−1)α 0 . . . 0
...

...
...

...
...

0 0 . . . . . . eilα


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The character under the rotation, the trace of the matrix, is given by:

χ(α) = e−ilα + e−i(l−1)α + · · ·+ eilα

This is a finite geometric series,∗∗ the sum of which is given by:

χ(α) =

l∑
ml=−l

e−imα =
e−ilα

(
ei(2l+1)α − 1

)
eiα − 1

=
ei(l+1)α − e−ilα

eiα − 1
=
ei(l+

1
2 )α − e−i(l+ 1

2 )α

e
iα
2 − e−

iα
2

=
sin(l + 1

2 )α

sin(α2 )

Alternatively, we can formulate the trace as:

χ(α) = e0 +
(
e−iα + eiα

)
+ · · ·+

(
e−ilα + e+ilα

)
= 1 + 2cosα+ · · ·+ 2cos(lα)

This second expression proves useful for C5 rotations, where characters are non-integer for odd l.

Either of these expressions can be used to find the characters of p, d and f orbitals under E (α = 0)
and the C2, C3, C4, C5, C2

5 and C6 rotations.

e.g. for a basis of f orbitals (l = 3) under a C3 rotation (α = 2π
3 ):

χ(
2π

3
) =

sin((3 + 1
2 )×

2π
3 )

sin( 2π
2×3 )

=
sin( 72 × 2π

3 )

sin(π3 )
=
sin( 73π)

sin(π3 )
= +1

Table 8.13: Characters, χ(α), for rotations of the p, d and f orbitals

p (l = 1) d (l = 2) f (l = 3)

E α = 0 3 5 7

C2 α = π –1 1 –1

C3 α = 2π
3 0 –1 1

C4 α = π
2 1 –1 –1

C5 α = 2π
5 1 + 2cos( 2π5 ) 0 1 + 2cos( 2π5 ) + 4cos( 4π5 )††

C2
5 α = 4π

5 1 + 2cos( 4π5 ) 0 1 + 2cos( 4π5 ) + 4cos( 8π5 )

C6 α = π
3 0 -1 –1

∗∗A geometric series takes the form arn. In the present case, a = e−ilα, r = eiα and n = 0, 1, . . . , 2l. The sum of

the first 2l + 1 terms is S2l+1 =
a
(
r(2l+1)−1

)
r−1

††cos(nπ + a) = cos(nπ − a)
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Let us now consider the representations of these atomic orbitals in a finite point group, O (note the
O point group contains only C4, C3 and C2 rotations - it is a sub-group of the more familiar Oh):

O E 8C3 3C2 6C4 6C ′
2

A1 1 1 1 1 1

A2 1 1 1 –1 –1

E 2 –1 2 0 0

T1 3 0 –1 1 –1

T2 3 0 –1 –1 1

p 3 0 –1 1 –1

d 5 –1 1 –1 1

f 7 1 –1 –1 –1

Applying the reduction formula to a set of d orbitals, for example:

n(E) =
1

24
[1× 5× 2 + 8× (−1)× (−1) + 3× 2× 1] = 1

n(T2) =
1

24
[1× 5× 3 + 3× (−1)× 1 + 6× (−1)× (−1) + 6× 1× 1] = 1

So we see that the d orbitals split into a two-fold (E) and a three-fold (T2) set in O symmetry. The
same process for p and f orbitals generates the following descent in symmetry table.

p→ T1

d→ E + T2

f → A2 + T1 + T2

In full octahedral symmetry we simply need to add u subscripts for p and f orbitals and a g subscript
for d orbitals.

8.2 d orbital splitting in axial fields - sandwich complexes and related
species

Sandwich complexes such as ferrocene, Fe(C5H5)2 and bis-benzene chromium, Cr(C6H6)2 have
played an important part in the development of inorganic chemistry (both earned Nobel Prizes!).
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You will encounter them in the Organometallics course in TT. These have high symmetry: D5h

and D6h, respectively, in their eclipsed conformers, D5d and D6d if they are staggered. It is useful,
therefore, to consider the properties of the d orbitals from a group-theoretical perspective. As was
the case for the octahedron, it is easiest to work with D5 and D6, which are sub-groups of both Dnh

and Dnd that contain only the rotations.

For D5, we have the following character table:

D5 E 2C5 2C2
5 5C2

A1 1 1 1 1

A2 1 1 1 –1

E1 2 2cos( 2π5 ) 2cos( 4π5 ) 0

E2 2 2cos( 4π5 ) 2cos( 2π5 ) 0

Γ(p) 3 1 + 2cos( 2π5 ) 1 + 2cos( 4π5 ) -1

Γ(d) 5 0 0 1

and, through the reduction formula or by inspection, we have Γ(d) = A1+E1+E2 and Γ(p) = A2+E1.

For D6, we have the following character table:

D6 E 2C6 2C3 C2 3C ′

2 3C ′′

2

A1 1 1 1 1 1 1

A2 1 1 1 1 -1 -1

B1 1 -1 1 -1 1 -1

B2 1 -1 1 -1 -1 1

E1 2 1 -1 -2 0 0

E2 2 -1 -1 2 0 0

Γ(p) 3 0 0 -1 -1 -1

Γ(d) 5 -1 -1 1 1 1

and, through the reduction formula or by inspection, we again have Γ(d) = A1 + E1 + E2 and
Γ(p) = A2 + E1.

Repeat the same procedure with D3 and D4 for practice.

The splitting of the d orbitals in various axial symmetries is collected in Table 8.14. An important
qualitative result is that in, D5 and D6, there is a 2:2:1 splitting pattern. dz2 is unique but (dxz,
dyz) and (dxy, dx2−y2) convert into linear combinations of each other under rotational operations
and therefore form two degenerate pairs. D4 is an exception to this pattern: (dxz, dyz) inter-convert
under the C4 operation, but dxy, dx2−y2 simply convert into minus themselves under the C4 opera-
tion. They are therefore no longer degenerate and we find a 2:1:1:1 splitting pattern that is unique
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Table 8.14: d-orbital splittings in axial groups, Dn, n = 3− 6

D3 D4 D5 D6

dz2 A1 A1 A1 A1

dyz
}

E E E1 E1
dxz

dxy
}

E
B2

E2 E2
dx2−y2 B1

to the D4 point group.

To avoid having to go through the same process every time, the essential information is usually
summarised in ”descent in symmetry tables” such as Table 8.15 which can be found online and in
your tables of group theory.

Table 8.15: Descent in symmetry table from R3 to O, D6, D5, D4 and D3

R3 O D6 D5 D4 D3

S A1 A1 A1 A1 A1

P T1 A2 + E1 A2 + E1 A2+E A2 + E

D E + T2 A1 + E1 + E2 A1 + E1 + E2 A1 +B1 +B2 + E A1 + 2E

8.3 Jahn-Teller Theorem
The Jahn-Teller theorem states the following: A non-linear molecule in an orbitally degen-
erate state will distort to relieve the degeneracy.

Note that the Jahn-Teller theorem is unambiguous: the molecule will distort. What the theorem
does not tell us is what the nature of the distortion is (which bonds or angles will change), or how
much it will distort (the distortion may be large but equally it may be so small that it lies within
the error limits of any technique we might use to measure it).

8.3.1 A brief note on states

The state of an atom or molecule is a collective property of all the electrons present, and its symme-
try therefore reflects all of the electrons. We will see in Section 9 how to deal with systems with more
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than one unpaired electron, but for now we will deal only with the rather simpler case where only
one unpaired electron is present. The symmetry of the state is then determined by the symmetry of
the orbital in which the unpaired electron is located. So, for example, if the unpaired electron is in
an orbital of a1 symmetry, the resulting state will have 2A1 symmetry. If the unpaired electron is in
an eg orbital, we will have a 2Eg state and so on. For the one-electron case, an ’orbitally-degenerate’
state is therefore associated with the presence of an unpaired electron in a degenerate orbital. Note
that we use lower case letters to describe the orbitals, upper case letters to describe the state. The
”2” is read as ’doublet’, and is equal to the multiplicity, 2S + 1.

Tables of descent in symmetry are useful in deciding which sort of distortion will lift the symmetry
as required by this theorem. Consider for example an octahedral system. Compression or elongation
along one of the C4 axes takes us into the D4h point group. Compression or elongation along one
of the C3 axes takes us into the D3d point group. If we have a d1 configuration with one electron
in a t2g orbital we have a T2g state. The degeneracy of such a state is lifted by either distortion.
By contrast in a d9 state with a t2g6eg3 configuration and an Eg ground state only the distortion to
D4h will lift the degeneracy.

Figure 9: Jahn-Teller splittings for a d9 configuration in D4h and D3d (Cu2+, for example)
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Oh D4h D3d

A1g A1g A1g

A2g B1g A2g

Eg A1g +B1g Eg

T1g A2g + Eg A2g + Eg

T2g B2g + Eg A1g + Eg

A1u A1u A1u

A2u B1u B1u

Eu A1u +B1u Eu

T1u A2u + Eu A2u + Eu

T2u B2u + Eu A1u + Eu

8.4 “2nd order” Jahn Teller effects
The starting point for the Jahn-Teller theorem discussed in section 8.3 is that the orbitals that are
unequally occupied are strictly degenerate: if this is the case then a distortion will occur. The ”2nd
order” Jahn Teller effect occurs when the orbitals in question are nearly, but not quite, degenerate.
These orbitals typically transform as different irreps in some high-symmetry point group, but as the
same irrep in some sub-group. The distortion from high to low symmetry will then allow the two
orbitals to interact, stabilising the lower (filled) one. The example of SF4 serves to illustrate the
principle.

Let us first consider the problem from the classic VSEPR perspective: what is the most stable
geometry of SF4? We would not anticipate a Td geometry because we have 5 pairs of valence
electrons, 1 more than in CF4. VSEPR then predicts a structure based on a trigonal bipyramid,
with a single vertex occupied by the lone pair. This gives us two possibilities, one with the lone pair
axial (C3v), the other with the lone pair equatorial (C2v). The greater lone-pair-bond-pair repulsion
if the lone pair is in the axial positions (3× repulsion at 90 ◦) then leads us to predict that the C2v

structure is the most stable, and this is indeed the case.

Now let us consider the same problem from a symmetry perspective. If we consider a hypothetical
tetrahedral geometry, the MO diagram in Figure 10 is much like that for CH4 (Figure 6) except that
the antibonding a1 level is occupied by the two additional electrons. The higher-lying t2 antibonding
level remains empty, but the energetic separation between a1 and t2 is now relatively small - they
are ’nearly’ degenerate. If we can find a distortion to a lower-symmetry structure that allows the
filled a1 to have the same symmetry with one of the components of the empty t2, this will stabilise
the former, and therefore stabilise the molecule.

We can imagine three possible distortions:

1. A flattening of the tetrahedron, giving D2d

2. A motion of three of the F atoms to give C3v
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Figure 10: Molecular orbital diagram for (hypothetical) tetrahedral SF4

3. A motion of two of the F atoms to give C2v

Figure 11: VSEPR predictions for the structure of SF4

Which of these would achieve the desired stabilisation of the a1 orbital? Descent in symmetry ta-
bles (Table 8.16) tell us that the a1 orbital will remain totally symmetric, whichever distortion we
choose. The threefold degeneracy of the t2 level will also be lifted and, if one of its component also
becomes totally symmetric, the occupied orbital will be stabilised. On this basis distortions to C2v

or C3v symmetry would lower the electronic energy, but distortion to D2d would not. The former
two structures are exactly those introduced in simple VSEPR arguments.
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Figure 12: Possible distortions of SF4

Table 8.16: Descent in symmetry from Td to D2d, C3v and C2v

Td D2d C3v C2v

A1 A1 A1 A1

A2 B1 A2 A2

E A1 +B1 E A1 +A2

T1 A2 + E A2 + E A2 +B1 +B2

T2 B2 + E A1 + E A1 +B1 +B2

9 Direct products and selection rules
9.1 Direct products and many electron states
In the section on matrix algebra (Section 4.3) we met the concept of a ’direct product’, often denoted
⊗. These prove to be very useful when we are dealing with the symmetry properties of collections
of two or more objects rather than a single one. The most obvious chemical application comes in
determining the symmetry of many electron states which arise from configurations where we know
the symmetry of the occupied orbitals, but also in formulating spectroscopic selection rules between
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orbitals or electronic states of known symmetry or between vibrational states.

We introduced states briefly in the discussion of the Jahn-Teller theorem. To reiterate, by con-
vention small letters such as a1, t2 etc. are used to specify configurations e.g. a1

2, t24, e3; and
upper case letters are used to label the many electron states e.g. 3A2, 2T1 etc. The notation for the
many electron states also introduces the multiplicity (2S + 1) as a superscript. These conventions
are reminiscent of those used in atomic theory and indeed the derivation of Russell-Saunders term
symbols for a specified configuration can be considered as a group theoretical problem analogous to
that being treated here.

9.2 Non-degenerate representations
Suppose we take the direct product of a function belonging to the irreducible representation Γ1

by another function belonging to Γ2. The characters of the product function, Γ12, is given by:
χ12(R) = χ1(R)χ2(R) (check this with matrices A and B in Section 4.3). We can therefore assign
the product function to one of the irreducible representations of the relevant point group by simply
multiplying out the characters and inspecting the character table.

Consider for example the point group C2v.

C2v E C2 σv(xz) σ′
v(xz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 –1 –1 Rz xy

B1 1 –1 1 –1 x, Ry xz

B2 1 –1 –1 1 y, Rz yz

C2v E C2 σv(xz) σ′
v(xz)

A1 ⊗B1 1 -1 1 -1 = B1

A2 ⊗A2 1 1 1 1 = A1

A2 ⊗B1 1 –1 –1 1 = B2

A2 ⊗B2 1 –1 1 –1 = B1

B1 ⊗B2 1 1 –1 –1 = A2

Trivially, multiplying a function of any symmetry by a totally symmetric function (A1) does not alter
the symmetry of the original function: for example A1⊗B1 = B1. In addition, if we multiply together
any two functions of the same symmetry we produce a function of A1 symmetry: A2 ⊗A2 = A1.

Following this process, we can set up a complete table of direct products. Note that the matrix is
diagonal, and the elements below the diagonal are usually not listed.
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Table 9.17: Direct product table for the C2v point group

C2v A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A1 B2 B1

B1 A1 A2

B2 A1

One simple use of this table is to demonstrate that closed shell configurations such as a12, a22, b12
etc. must give rise to a totally symmetric A1 state.

9.3 Degenerate representations
Consider the point group C3v. The same ideas as developed for the point group C2v apply to the
non-degenerate A1 and A2 irreducible representations. In addition A1 ⊗ E or A2 ⊗ E is simply
E. The interesting case is E ⊗ E, which gives a set of characters that do not correspond to one of
the irreducible representations of the group. However, inspection (or application of the reduction
formula) allows us to deduce that this representation is reducible to A1 +A2 + E.

C3v E 2C3 3σv
A1 1 1 1 z x2 + y2, z2

A2 1 1 –1 Rz

E 2 –1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

E ⊗ E 4 1 0

Thus the direct product table has the form shown below.

C3v A1 A2 E

A1 A1 A2 E

A2 A1 E

E A1 + [A2] + E

But what does the square bracket around A2 mean? We can distinguish two possible situations
where the e ⊗ e direct product occurs: (a) where the two electrons are in different orbitals of e
symmetry (e1e1) and (b) where they are both in the same (degenerate) orbital of e symmetry. In
the former case, there is no restriction on the spins of the two electrons, and we get both singlet and
triplet versions of all spatial symmetries:

e1e1 → 3A1 +
1 A1 +

3 A2 +
1 A2 +

3 E +1 E
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If, however, the two electrons are in the same orbital (case (b)), the Pauli principle restricts the
number of possible micro-states: we cannot have both electrons in the same orbital with the same
spin. There are only six ways of arranging two electrons in a pair of degenerate orbitals so as not to
violate the Pauli exclusion principle:

Figure 13: Microstates for a e2 configuration

The only way we can arrive at a total of six from a combination of singlets and triplets, and singly
and doubly-degenerate spatial components, is either 3A1 +

1 A2 +
1 E or 1A1 +

3 A2 +
1 E.

The Pauli principle demands that the total wavefunction must be antisymmetric with respect to
interchange of any two electrons. The wavefunction itself is the product of a spin part and a spatial
part: if the product of the two is antisymmetric with respect to exchange, then one of the two
components (spin and space) must be symmetric, the other antisymmetric.

If we look at the spin components, singlet and triplet, it is clear that the triplets are symmetric
(they don’t change if we swap the labels 1 and 2) but the singlet is antisymmetric. The triplet
must therefore be associated with the antisymmetric spatial wavefunction, while the singlets are
associated with symmetric spatial wavefunctions.

• Singlet spin wavefunction

• α(1)β(2) – α(2)β(1)

• Triplet spin wavefunctions

• α(1)α(2)

• β(1)β(2)

• α(1)β(2) + α(2)β(1)

Finally, the square bracket in the direct product tables identifies the spatial wavefunction that is
antisymmetric, which we know must be combined with the symmetric (triplet) spin function. So
the square bracket around [A2] in the table tells us that we have a 3A2 state, and therefore also 1A1

and 1E.

We can use descent in symmetry to prove this point. The descent in symmetry table from C3v to Cs

(a sub-group of C3v) shows that the two components of the e orbital transform differently, as a′+a′′.
The triplet state arising from the e2 configuration therefore correlates with a′

1
a′′

1 (we know that
one electron must be in each orbital for a triplet), and so it must be 3A′′ (a′⊗a′′ = a′′). Correlating
back to C3v, the triplet must therefore be 3A2 and not 3A1.‡‡

‡‡Note here that the ground state (3A2) is not orbitally degenerate, despite the fact that we have unpaired electrons
in degenerate orbitals (e2). A degenerate state arises when we have an arbitrary choice of where to put an unpaired
electron - for the eg3 configuration, we can put the 3rd electron in either of the two components of the eg orbital
without changing the energy. For the e2 configuration we are dealing with here, the triplet multiplicity leaves us
with no option other than to put one electron in each of the two components of e. We have no choice, so there is no
degeneracy.
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Cs E σ

A′ 1 1 x, y,Rz x2, y2, z2, xy

A′′ 1 –1 z,Rx, Ry yz, xz

C3v Cs

A1 A′

A2 A′′

E A′ +A′′

Let us now extend these ideas to see which states arise in an tetrahedal transition metal complex
with two d electrons. Hund’s rule tells us that the triplet states will be most stable, so we will
concern ourselves only with these.

For the ground state configuration, e2, the direct product table, Table 9.18, tells us that E ⊗ E =
A1 + [A2] + E, so the triplet ground state is 3A2.

For the first excited configuration, e1t12, the direct product table tells us that E ⊗ T2 = T1 + T2. In
this case, the singly occupied orbitals must be different (one is e, the other t2), so the Pauli princi-
ple is not relevant, there are no square brackets, and we get triplets (and singlets) for both T1 and T2.

For the second excited configuration, t22, the direct product table tells us that T2 ⊗ T2 = A1 + E +
[T1] + T2. So the only triplet state is 3T1.

Table 9.18: Direct products for the Td and Oh point groups.

A1 A2 E T1 T2

A1 A1 A2 E T1 T2

A2 A1 E T2 T1

E A1 + [A2] + E T1 + T2 T1 + T2

T1 A1 + E + [T1] + T2 A2 + E + T1 + T2

T2 A1 + E + [T1] + T2

So we have a triplet ground state, 3A2 and three triplet excited states, 2×3 T1 and 3T2, arising from
the distribution of two electrons over the five d orbitals in a tetrahedron. So we would predict a
maximum of three transitions in the UV/vis spectrum, from the ground state to each of the three
excited states (see Spectroscopy and Magnetism, year 3).
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9.4 General features of tables of direct products
Tables of direct products are supplied in finals. They do not deal explicitly with all groups and the
basic tables need to be supplemented with the additional rules:

g × g = g ′×′ =′

u× u = g ′′×′′ =′

g × u = u ′×′′ =′′

A general feature of all of the tables (illustrated by the specific examples above) is that the totally
symmetrical irreducible representation only occurs on the diagonal in the tables, where we are mul-
tiplying together two functions belonging to the same irreducible representation.

9.5 Spectroscopic selection rules
In spectroscopy we are concerned with transitions between two states, each characterised by a wave-
function. Let ground and excited state wavefunctions be Ψ1 and Ψ2. In general a transition is
mediated by an operator Ô and the intensity of the transition is such that:

I ∝ |
∫

Ψ1ÔΨ2dτ |
2

Hence for non-zero intensity the direct product Γ(Ψ1) ⊗ Γ(Ô) ⊗ Γ(Ψ2) must contain the totally
symmetric irreducible representation. For both infrared and visible/UV spectroscopy the operator
responsible for transitions driven by the oscillating electric fields associated with the incident electro-
magnetic radiation is the electric dipole moment operator, µ. This is a vector and has components
which transform like the translations x, y and z. The irreducible representations corresponding to
the three vectors always appear in character tables. Much weaker magnetic dipole transitions are me-
diated by oscillating magnetic fields. Here the operator transforms like the rotations Rx, Ry and Rz.

9.5.1 Transitions for d2 in a tetrahedral environment

In the previous section we saw that the e2 ground configuration gives a 3A2 ground state, whilst the
first excited configuration e1t21 gives triplet terms 3T1 and 3T2 and the second excited configuration,
t2

2 gives 3T1. Are transitions from the ground state to all three excited states allowed?

The electric-dipole moment operator transforms as (x, y, z), which has T2 symmetry in the Td point
group.

Is the 3A2 →3 T1 transition electric-dipole allowed?
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A2 ⊗ T2 ⊗ T1 = (A2 ⊗ T2)⊗ T1 = T1 ⊗ T1 = A1 + E + T1 + T2

This triple direct product contains A1 and so the transition 3A2 →3 T1 is electric-dipole allowed.

Is the 3A2 →3 T2 transition electric-dipole allowed?

A2 ⊗ T2 ⊗ T2 = (A2 ⊗ T2)⊗ T2 = T1 ⊗ T2 = A2 + E + T1 + T2

This triple product does not contain A1 and so the transition 3A2 →3 T2 is not electric-dipole allowed.

Is the 3A2 →3 T2 transition magnetic-dipole allowed?

The magnetic-dipole moment operator transforms as (Rx, Ry, Rz), which has T1 symmetry in the
Td point group.

A2 ⊗ T1 ⊗ T2 = A1 + E + T1 + T2

so the transition 3A2 →3 T2 is magnetic-dipole allowed, but magnetic dipole transitions are typically
several orders of magnitude weaker than electric-dipole transitions.

9.5.2 d → d Transitions in octahedral (Oh) complexes

All d-electron configurations necessarily give rise to gerade (g) terms because the d orbitals are g.
The dipole moment operator is T1u. Any direct product of the sort g ⊗ u ⊗ g = u and so cannot
contain A1g. Hence d → d transitions are dipole forbidden in octahedral symmetry.
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10 Molecular vibrations
10.1 Introduction
In general the vibration of a polyatomic molecule does not involve deformation of an individual
bond or bond angle. Instead, molecular vibrations involve excitation of normal modes. A normal
mode of vibration involves a synchronous deformation of the molecule in which the displacement
vectors describing the motion of individual atoms combine so as to belong to one of the irreducible
representations of the molecule. The atoms all undergo their displacements at the same frequency
and all pass through the equilibrium configuration at the same time.

10.2 Types of vibrational spectroscopy
10.2.1 Infra-red spectroscopy

This is the most common form of vibrational spectroscopy, where the transition is induced by the
electric-dipole moment of the electromagnetic field. Typically, transitions occur in the infra-red
region of the spectrum (hence the name!), in contrast to the d− d transitions discussed previously,
which tend to fall at higher frequencies, in the visible or UV regions.

The principle behind determining whether a transition is allowed or not is exactly the same as we
discussed for d− d transitions: we require that the transition dipole moment integral:∫

Ψ1µ̂Ψ2dτ

is non-zero, which in turn requires that the direct product Γ(Ψ1)⊗ Γ(x, y, z)⊗ Γ(Ψ2) must contain
the totally symmetric irreducible representation. Γ(Ψ1) and Γ(Ψ2) are the symmetries of the ground
and excited state vibrational wavefunctions, respectively.

When dealing with closed shell molecules in their ground vibrational state (as we usually are), the
ground state vibrational wavefunction is totally symmetric and does not therefore affect the direct
product:

Γ(Ψ1)⊗ Γ(x, y, z)⊗ Γ(Ψ2) = Γ(x, y, z)⊗ Γ(Ψ2)

It therefore follows that the only transitions that can be observed in IR involve vibrations of the
same symmetry as the dipole moment operator (because only on the diagonal of the direct product
table do we find totally symmetric irreducible representations), and we can deduce IR activity by
simple inspection of the character table and matching symmetries to those of x, y and z.

10.2.2 Raman spectroscopy

In Raman spectroscopy, the incident electric field produces an oscillating polarisation of the molecule,
which then emits radiation at the incident frequency minus a vibrational frequency (Stokes scatter-
ing). Raman activity is governed by the polarisability tensor, α, which relates the dipole induced in
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x, y and z directions to electric fields Ex, Ey and Ez.
µx

µy

µz

 =


αxx αxy αxz

αyx αyy αyz

αzx αzy αzz



Ex

Ey

Ez


The components of the polarisability tensor transform like x2, y2, xy, xz etc. or linear combinations
of them. Since xy and yx, xz and zx and yz and zy have the same transformation properties, there
are 6 components of the polarisability tensor to worry about. One component is always totally sym-
metrical, whilst the other 5 components behave like the d orbitals. Again for closed shell molecules
one can deduce the pattern of Raman activity by comparing the symmetries of the vibrational modes
to the components of the tensor in the character table.

10.3 Basis sets for molecular vibrations
For either infra-red or Raman spectroscopy, the critical piece of information that we require is the
symmetry of the vibrations. We have two common choices of basis, depending on what level of
information we wish to get from the calculation.

• If we want to know about all 3N − 6 vibrations of a molecule (stretches, bends, torsions), we
choose a set of 3N displacement vectors, with 3 vectors attached to each of the N atoms in
a polyatomic molecule. This will form the basis for construction of 3N symmetry adapted
functions. However, 3 of these must correspond to translation of the molecule as whole in
three orthogonal directions. In non-linear molecules a further 3 correspond to molecular rota-
tion about three mutually perpendicular axes. For linear molecules there are only 2 rotational
degrees of freedom. Thus we find 3N − 6 modes of normal modes of vibration for non-linear
molecules and 3N − 5 for linear molecules. In high symmetry molecules some of these modes
may be grouped together in degenerate sets.

• In many situations (especially on General Papers!) we may need to know only about the
stretching vibrations. These typically dominate the spectrum at high frequencies: bends and
torsions come lower down. A common example is where we want to know about stretching
vibrations in ABn polyatomics or about carbonyl stretches or cyanide stretches in M(CO)n or
M(CN)n complexes. In these cases we can use a much simpler basis set which consists simply
of a set of n vectors along the bond directions. This basis set will generate the n stretching
vibrations, but will not give any information on bends or torsions.

10.4 Using bond stretching basis sets
Here, we place a vector along each bond. In principle we need to write down the transformation
matrices which describe the effects of each symmetry operation on the chosen basis set and take
their trace. However, we can use the same shortcut we adopted for atomic orbitals: vectors on a
given bond only contribute to the diagonal sum if the bond is unshifted by the symmetry operation.

When we are dealing with the set of n bond stretching vectors in an ABn molecule this gives us the
simple rule: the character under operation R, χ(R) = the number of bonds (or, equivalently, the
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number of B atoms) that are unshifted under the operation.

We can now apply these ideas to deduce the irreducible representations spanned by bond stretching
vectors in SF4, CF4 and XeF4.

10.4.1 Stretching vibrations of SF4: point group C2v

Figure 14: Axis definitions for SF4

C2v E C2 σv(xz) σ′
v(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 –1 –1 Rz xy

B1 1 –1 1 –1 x, Ry xz

B2 1 –1 –1 1 y, Rz yz

Γstretch 4 0 2 2

Applying the reduction formula:

n(A1) =
1

4
[4 + 0 + 2 + 2] = 2

n(A2) =
1

4
[4 + 0− 2− 2] = 0

n(B1) =
1

4
[4 + 0 + 2− 2] = 1

n(B2) =
1

4
[4 + 0− 2 + 2] = 1

Γstretch = 2A1 +B1 +B2

Comparing the symmetries to the character table, we see that all 4 modes are both IR and Raman
active (there is at least one of (x, y, z) and one of (x2, y2, z2, xz, yz, xy) in the right-hand columns
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for each of A1, B1 and B2). Note that a vibration of A2 symmetry would be allowed in the Raman
(xy) but not in the infra-red. However, there are no modes of A2 symmetry in this case, so the point
is moot.

We could derive the same result slightly more easily by recognising that there are two different sorts
of F atom, equatorial and axial, and no symmetry element inter-converts them. This means that
we can derive the symmetries of their stretches separately. For each pair an in phase combination
of stretches gives an A1 mode, whilst the out of phase combinations generate the B1 and B2 modes.
This simple consideration allows us to sketch out the displacement vectors in the stretching modes.

Figure 15: S-F stretching modes for SF4

10.4.2 Stretching vibrations of CF4: point group Td

Figure 16: Axis definitions for CF4

Td E 8C3 3C2 6S4 6σd
A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1

E 2 –1 2 0 0 (2z2 − x2 − y2, x2 − y2)

T1 3 0 –1 1 –1 (Rx, Ry, Rz)

T2 3 0 –1 –1 1 (x, y, z) (xy, xz, yz)

Γstretch 4 1 0 0 2
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Applying the reduction formula:

n(A1) =
1

24
[(4× 1× 1) + (1× 1× 8) + 0 + 0 + (2× 1× 6)] = 1

n(A2) =
1

24
[(4× 1× 1) + (1× 1× 8) + 0 + 0(2× 1× 6)] = 0

n(E) =
1

24
[(4× 2× 1)− (1× 1× 8) + 0 + 0 + 0] = 0

n(T1) =
1

24
[(4× 3× 1) + 0 + 0 + 0(2× 1× 6)] = 0

n(T2) =
1

24
[(4× 3× 1) + 0 + 0 + 0 + (2× 1× 6)] = 1

Γstretch = A1 + T2

A1 is only Raman active; T2 is both IR and Raman active. The form of the A1 mode is trivially
obvious. We could work out the directions of the vectors in the T2 modes using the projection
operator, but this would entail a lot of work. A simpler way is to use the trick of ’matching’ to the
phases of an orbital of the same symmetry on an invariant point. In this case, the orbitals would be
the three p orbitals on the central C atom, which also trasform as T2. We use the convention that
the displacement vector points towards the positive lobe of the orbital and away from the negative
lobe.

Figure 17: Vibrational modes of CF4

10.4.3 Stretching vibrations of XeF4: point group D4h

Application of the reduction formula is somewhat tedious in this case but we arrive at:
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Figure 18: Axis definitions for XeF4

Table 10.19: D4h Character table

D4h E 2C4 C2 2C ′
2 2C ′′

2 i 2S4 σh 2σv 2σd
A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 –1 –1 1 1 1 –1 –1 Rz

B1g 1 –1 1 1 –1 1 –1 1 1 –1 x2y2

B2g 1 –1 1 –1 1 1 –1 1 –1 1 xy

Eg 2 0 –2 0 0 2 0 –2 0 0 (Rx, Ry)

A1u 1 1 1 1 1 –1 –1 –1 –1 –1

A2u 1 1 1 –1 –1 –1 –1 –1 1 1 z

B1u 1 –1 1 1 –1 –1 1 –1 –1 1

B2u 1 –1 1 –1 1 –1 1 –1 1 –1

Eu 2 0 –2 0 0 –2 0 2 0 0 (x, y)

Γstretch 4 0 0 2 0 0 0 4 2 0

n(A1g) =
1

16
[(4× 1× 1) + 0 + 0 + (2× 1× 2) + 0 + 0 + 0 + (4× 1× 1) + (2× 1× 2) + 0] = 1

n(A2g) =
1

16
[(4× 1× 1) + 0 + 0(2× 1× 2) + 0 + 0 + 0 + (4× 1× 1)(2× 1× 2) + 0)] = 0

n(B1g) =
1

16
[(4× 1× 1) + 0 + 0 + (2× 1× 2) + 0 + 0 + 0 + (4× 1× 1) + (2× 1× 2) + 0] = 1

n(B2g) =
1

16
[(4× 1× 1) + 0 + 0(2× 1× 2) + 0 + 0 + 0 + (4× 1× 1)(2× 1× 2) + 0] = 0

n(Eu) =
1

16
[(4× 2× 1) + 0 + 0 + 0 + 0 + 0 + 0 + (4× 2× 1) + 0 + 0] = 1
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Γstretch = A1g +B1g + Eu

Of these modes A1g and B1g are Raman active and Eu is IR active. The mutual exclusion rule
applies, as in all centrosymmetric systems. Because the dipole moment operator is u and the com-
ponents of the polarisability tensor are g, no mode can be both Raman and IR active in a molecule
with a centre of symmetry.

We have completed the job for XeF4, but large character tables like D4h are tedious and it is easy
to make a mistake. We could have made our life easier by using the same trick we applied in
dealing with the π orbitals of benzene. There, we used our knowledge of the basis functions involved
(the pπ set) to reject all irreps that were symmetric under σh. That allowed us to work with the
smaller C6v sub-group. We apply the same thought process here - the basis functions, the vectors
along the bonds, lie in the molecular plane, so any linear combination of them cannot possibly be
antisymmetric under σh. Hence we can use the rather simpler character table of the C4v sub-group,
where the irrelevant information about σh has been taken out.

Table 10.20: Character Table for C4v

C4v E 2C4 C2 2σv 2σd
A1 1 1 1 1 1 z z2,x2 + y2

A2 1 1 1 -1 –1

B1 1 –1 1 1 -1 x2 − y2

B2 1 –1 1 –1 1 xy

E 2 0 –2 0 0 (x, y) (xz, yz)

Γstretch 4 0 0 2 0

Applying the reduction formula is now much easier: we get A1 +B1 + E.

All that is left to do is to restore the missing g and u labels. To do so, we need to look for the A1g/u,
B1g/u and Eg/u irreps of D4h in Table 10.19 that are symmetric with respect to σh: these are A1g,
B1g and Eu, as we proved before.

Exercise: Sketch out the form of the modes.

10.5 All the vibrations of NH3: stretches and bends
Thus far, we have used the bond vectors as a basis to explore the stretching modes of the molecules.
This is typically the level required in general papers, but in more advanced applications (typically
in the Inorganic Spectroscopy option paper) we might wish to know the symmetries of all 3N − 6
vibrations, including bends and torsions as well as stretches. If we want to separate the stretches
from the bends, we can get the former from an analysis using the bond vectors (as we have just done
for SF4, CF4 and XeF4), and subtract them from the total to leave the bends.
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We can tackle the problem of deriving the symmetry of its normal modes of vibration using a “com-
plete” basis set with 3 vectors on each of the atoms: this captures all possible movements of atoms
relative to each other. We take NH3 as a simple example (point group C3v).

Figure 19: Plan view of the NH3 molecule with a complete basis set of 3 displacement vectors. A
“z” vector points upward from each atomic centre

C3v E 2C3 3σv
A1 1 1 1 z x2 + y2, z2

A2 1 1 –1 Rz

E 2 –1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

We first need to work out the transformation properties of a set of (x, y, z) vectors on the central N
atom. For the C3 rotations, we could use the formula established in section 8, with l = 1:

χ(α) =
sin(l + 1

2 )α

sin(α2 )

χ(
2π

3
) = 0

and for the reflections: σ1, for example, converts x → −x, y → y and z → z, giving χ(σv) = 1

Γ(Nx,y,z) = 3 0 1 = A1 + E

Alternatively, we could just look to the right of the character table and note that an (x, y, z) basis
on an invariant point (i.e. the N atom) gives A1 + E!
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The characters for the 9 remaining basis vectors on the hydrogens are somewhat easier to work out
because if the atoms move, so too do the basis functions, and the contribution to χ will be zero.
All three H atoms move under C3, so χ(C3) = 0. For σv, only h1 is unmoved (we choose σ1, noting
that the character is the same for all members of the σ class), and x → −x, y → y and z → z
on this atom, giving a total χ(σv) = 1. The total representation is then:

Γ(x, y, z) = 3 + 9 0 1 + 1 = 12 0 2

C3v E 2C3 3σv
A1 1 1 1 z x2 + y2, z2

A2 1 1 –1 Rz

E 2 –1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

Γ(atoms) 4 1 2

Γ(3N) 12 0 2

Application of the reduction formula gives:

n(A1) =
1

6
[(12× 1× 1) + 0 + (2× 1× 3)] = 3

n(A2) =
1

6
[(12× 1× 1) + 0 + (2× 1× 3)] = 1

n(E) =
1

6
[(12× 2× 1) + 0 + 0] = 4

Γ(3N) = 3A1 +A2 + 4E

We then need to subtract off the three translations (which transform as x, y, z) and the three rota-
tions, which transform as (Rx, Ry, Rz), leaving the 3N − 6 = 6 vibrational modes.

Γ(trans) = A1 + E

Γ(rot) = A2 + E

Γ(vib) = Γ(stretch) + Γ(bend) = Γ(3N)− Γ(trans)− Γ(rot) = 2A1 + 2E

Using a set of 3 stretching vectors it can be quickly shown that Γstretch = A1 + E and therefore
the remainder is Γbend = A1 + E. Where stretching and bending modes are of the same symmetry,
mixing between them is allowed, so each A1 mode will be a mixture of bending and stretching.
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All of the above is rather cumbersome, and it is more difficult again when 3-fold rotation axes run
through atoms other than the central one (as would have been the case in tetrahedral CH4, for
example). Identifying the characters for the 3N − 3 basis vectors on the outer atoms is then very
time-consuming. Fortunately, there is a shortcut!

In the NH3 example:

C3v E 2C3 3σv
Γ(atoms) 4 1 2

Γ(x, y, z) 3 0 1

Γ(atoms)⊗ Γ(x, y, z) 12 0 2

Γ(3N) 12 0 2

Γ(3N) = Γ(atoms)⊗ Γ(x, y, z)

We can generate the representations spanned by the 3N basis vectors by taking the representation
generated by the atoms and multiplying it by the representations spanned by (x, y, z), both of which
are much easier to work out.

We can do this even more simply using the labels of the irreducible representations rather than
representations themselves:

Γ(atoms) = 2A1 + E

Γ(x, y, z) = A1 + E

Γ(atoms)⊗ (Γ(x, y, z))

= (2A1 + E)⊗ (A1 + E) = 2A1 + E + 2E +A1 +A2 + E = 3A1 +A2 + 4E = Γ(3N)

10.6 The vibrations of C60

C60 is a remarkable molecule built up from 20 hexagonal rings and 12 pentagonal rings. Group
theory played an important part in the discovery C60 by making the simple prediction that the
molecule should have only 4 infrared active vibrations, a prediction which subsequently proved to

75



be true.

C60 is a very rare example of a molecule belonging to the icosahedral point group Ih. The 3N − 6
rule tells us that there are no less than 174 modes of vibration and on the face of it the problem of
deriving the symmetry of these modes is formidable. The character table (see appendix) looks par-
ticularly unfriendly and contains characters such as 1

2 (1±
√
5). The group order is 120 and there are

10 irreducible representation including 4-fold degenerate G representations and five-fold degenerate
H representations. These degeneracies are not encountered in other molecular point groups.

Nevertheless it turns out to be very easy to derive the normal modes of vibration. The simplicity
arises because none of the rotational axes passes through any of the atoms, so we can immediately
set the character of the basis set of 180 displacement vectors under all rotational operations to zero.

The character under inversion i is also zero.

The 15 mirror planes each contain 4 atoms so that the character under σ is (4× 2− 4× 1) = 4. Two
of the basis vectors on each atom will remain unchanged, one will change sign).

The only other operation where a non-zero character appears is under the identity operation, where
χ(E) = 180.

Note that we could also have generate Γ(3N) by taking Γ(atoms) and multiplying by Γ(x, y, z) - in
this case T1u.

The large number of zeros in Γ(3N) makes application of the reduction formula relatively straight-
forward: there are only 4 infrared active T1u modes and 8 Raman active Hg modes.

Ih E 12C5 12C2
5 20C3 15C2 i 12S10 12S2

10 20S6 15σ

Γ(at) 60 0 0 0 0 0 0 0 0 4

Γ(3N) 180 0 0 0 0 0 0 0 0 4
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Figure 20: The C60 cluster, buckminsterfullerene

n(Ag) =
1

120
[(1× 180) + (4× 15)] = 2

n(Au) =
1

120
[(1× 180)(4× 15)] = 1

n(T1g) =
1

120
[(3× 180)(4× 15)] = 4

n(T1u) =
1

120
[(3× 180) + (4× 15)] = 5

n(T2g) =
1

120
[(3× 180)− (4× 15)] = 4

n(T2u) =
1

120
[(3× 180) + (4× 15)] = 5

n(Gg) =
1

120
[(4× 180) + (0× 15)] = 6

n(Gu) =
1

120
[(4× 180) + (0× 15)] = 6

n(Hg) =
1

120
[(5× 180) + (4× 15)] = 8

n(Hu) =
1

120
[(5× 180)(4× 15)] = 7

Γ(3N) = 2Ag + 4T1g + 4T2g + 6Gg + 8Hg +Au + 5T1u + 5T2u + 6Gu + 7Hu

Γ(trans) = T1u Γ(rot) = T1g
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Γ(vib) = 2Ag + 3T1g + 4T2g + 6Gg + 8Hg +Au + 4T1u + 5T2u + 6Gu + 7Hu

10.7 Combination and overtone bands
For purely harmonic potential functions, only one vibrational quantum can be excited by absorption
of one photon. However, anharmonicity allows simultaneous excitation of two or more quanta of one
vibration in overtone bands or one quantum each of two or more different vibrations in combination
bands.

Where two quanta are involved the selection rule is that the quadruple direct product Γ1 ⊗ Γ(Ô)⊗
(Γ2 ⊗ Γ3) must contains the totally symmetric irreducible representation.

For closed shell molecules this effectively means that the direct product between the two vibrations
involved, Γ2 ⊗ Γ3, must contain Γ(Ô). A special point is that because vibrations are bosons, only
the symmetric part of the direct product (i.e. that part not appearing in brackets in multiplication
tables) is relevant.

10.8 Vibronic transitions
In Section 9.5.2 we concluded that all d − d transitions in octahedral complexes were forbidden
because all the relevant states were symmetric with respect to inversion (g) while the dipole moment
operator was antisymmetric (T1u), meaning that the triple product could not possibly contain the
totally symmetric representation, A1g. However, one of the defining features of transition metal
complexes is that they are coloured, so these transitions clearly are not completely forbidden. What
have we missed?

A change in electronic state is usually accompanied by a simultaneous change in vibrational state.
So rather than considering only the symmetry of the ground and excited electronic states, we need
to consider their total symmetry, which is the product of electronic and vibronic components.

The vibrational wavefunction of the ground state is always totally symmetric, so we need to con-
sider the quadruple direct product involving the symmetry of the electronic ground state (Γ1), the
symmetry of the electronic excited state (Γ2), the symmetry of the vibrational wavefunction in the
excited state (Γ3) and the symmetry of the dipole moment operator (Γ(x, y, z)).

Γ(Ψ1)⊗ Γ(x, y, z)⊗ (Γ(Ψ2)⊗ Γ(Ψ3))

An octahedron has stretching vibrations A1g + Eg + T1u and bends T1u + T2u + T2g.

Consider excitation of a d1 complex from its 2T2g ground state to the 2Eg excited state. This is
electronically forbidden, but what if we couple the electronic excitation with excitation of a T1u-
symmetric vibrational mode?
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T2g ⊗ T1u × (Eg ⊗ T1u) = (T2g ⊗ T1u)⊗ (T1u + T2u) = (A2u + Eu + T1u + T2u)⊗ (T1u + T2u)

The final direct product step would generate 22 components so it has not been expanded in full,
but in fact we don’t need to do so: it is immediately obvious that it contains two diagonal prod-
ucts (T1u ⊗ T1u and T2u ⊗ T2u), both of which will generate the required totally symmetric A1g

representation. So the transition is allowed if it is vibronically promoted by a T1u mode. This
would not have been the case if we had chosen a vibration of Eg or A1g symmetry - the transi-
tion would still have been forbidden. The key difference is that the T1u mode eliminates the centre
of symmetry while the others do not (much more on this next year in Spectroscopy and Magnetism!).
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11 Character tables

Ci E i

Ag 1 1 Rx,Ry,Rz x2, y2, z2, xy, xz, yz

Au 1 –1 x,y,z

Cs E σh

A
′ 1 1 x,y x2, y2, z2, xy

A
′′ 1 –1 z xz,yz

Cnv point groups

C2v E C2 σv(xz) σ′
v(yz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 –1 –1 Rz xy

B1 1 –1 1 –1 x, Ry xz

B2 1 –1 –1 1 y, Rz yz

C3v E 2C3 3σv
A1 1 1 1 z x2 + y2, z2

A2 1 1 –1 Rz

E 2 –1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

C4v E 2C4 C2 2σv 2σ′
v

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 –1 –1 Rz

B1 1 –1 1 1 –1 x2 − y2

B2 1 –1 1 –1 1 xy

E 2 0 –2 0 0 (x, y) (Rx, Ry) (xz, yz)
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C5v E 2C5 2C2
5 5σv

A1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 –1 Rz

E1 2 2cos(2π/5) 2cos(4π/5) 0 (x, y) (Rx, Ry) (xz, yz)

E2 2 2cos(4π/5) 2cos(2π/5) 0 (x2 − y2, xy)

C6v E 2C6 2C3 C2 3σd 3σv
A1 1 1 1 1 1 1 z z2,x2 + y2

A2 1 1 1 1 –1 –1 Rz

B1 1 –1 1 –1 1 –1

B2 1 –1 1 –1 –1 1

E1 2 1 –1 –2 0 0 (x, y),(Rx, Ry) (xz, yz)

E2 2 –1 –1 2 0 0 (xy, x2 − y2)

Dnh point groups

D2h E C2(z) C2(y) C2(x) i σ(xy) σ(xz) σ(yz)

Ag 1 1 1 1 1 1 1 1 z2,x2,y2

B1g 1 1 –1 –1 1 1 –1 –1 Rz xy

B2g 1 –1 1 –1 1 –1 1 –1 Ry xz

B3g 1 –1 –1 1 1 –1 –1 1 Rx yz

Au 1 1 1 1 –1 –1 –1 –1

B1u 1 1 –1 –1 –1 –1 1 1 z

B2u 1 –1 1 –1 –1 1 –1 1 y

B3u 1 –1 –1 1 –1 1 1 –1 x
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D3h E σh 2C3 2S3 3C2 3σv
A

′

1 1 1 1 1 1 1 z2,x2 + y2

A
′

2 1 1 1 1 –1 –1 Rz

A
′′

1 1 –1 1 –1 1 –1

A
′′

2 1 –1 1 –1 –1 1 z

E
′ 2 2 –1 –1 0 0 (x, y) (xy, x2 − y2)

E
′′ 2 –2 –1 1 0 0 (xz, yz) (Rx, Ry)

D4h E 2C4 C2 2C ′
2 2C ′′

2 i 2S4 σh 2σv 2σd
A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 –1 –1 1 1 1 –1 –1 Rz

B1g 1 –1 1 1 –1 1 –1 1 1 –1 x2 − y2

B2g 1 –1 1 –1 1 1 –1 1 –1 1 xy

Eg 2 0 –2 0 0 2 0 –2 0 0 (Rx, Ry)

A1u 1 1 1 1 1 –1 –1 –1 –1 –1

A2u 1 1 1 –1 –1 –1 –1 –1 1 1 z

B1u 1 –1 1 1 –1 –1 1 –1 –1 1

B2u 1 –1 1 –1 1 –1 1 –1 1 –1

Eu 2 0 –2 0 0 –2 0 2 0 0 (x, y)

D5h E 2C5 2C2
5 5C2 σh 2S5 2S2

5 5σd
A′

1 1 1 1 1 1 1 1 1 x2 + y2, z2

A′
2 1 1 1 –1 1 1 1 –1 Rz

E′
1 2 2cos(2π/5) 2cos(4π/5) 0 2 2cos(2π/5) 2cos(4π/5) 0 (x, y)

E′
2 2 2cos(4π/5) 2cos(2π/5) 0 2 2cos(4π/5) 2cos(2π/5) 0 (xy, x2 − y2)

A′′
1 1 1 1 1 –1 –1 –1 –1

A′′
2 1 1 1 –1 –1 –1 –1 1 z

E′′
1 2 2cos(2π/5) 2cos(4π/5) 0 –2 –2cos(2π/5) –2cos(4π/5) 0 (xz, yz)

E′′
2 2 2cos(4π/5) 2cos(2π/5) 0 –2 –2cos(4π/5) –2cos(2π/5) 0
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D6h E 2C6 2C3 C2 3C ′
2 3C ′′

2 i 2S3 2S6 σh 3σd 3σv
A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2,z2

A2g 1 1 1 1 –1 –1 1 1 1 1 –1 –1 Rz

B1g 1 –1 1 –1 1 –1 1 –1 1 –1 1 –1

B2g 1 –1 1 –1 –1 1 1 –1 1 –1 –1 1

E1g 2 1 –1 –2 0 0 2 1 –1 –2 0 0 (Rx, Ry) (xz, yz)

E2g 2 –1 –1 2 0 0 2 –1 –1 2 0 0 (xy, x2 − y2)

A1u 1 1 1 1 1 1 –1 –1 –1 –1 –1 –1

A2u 1 1 1 1 –1 –1 –1 –1 –1 –1 1 1 z

B1u 1 –1 1 –1 1 –1 –1 1 –1 1 –1 1

B2u 1 –1 1 –1 –1 1 –1 1 –1 1 1 –1

E1u 2 1 –1 –2 0 0 –2 –1 1 2 0 0 (x, y)

E2u 2 –1 –1 2 0 0 –2 1 1 –2 0 0
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Dnd point groups

D2d E 2S4 C2 2C ′
2 2σd

A1 1 1 1 1 1 z2,x2 + y2

A2 1 1 1 –1 –1 Rz

B1 1 –1 1 1 –1 x2 − y2

B2 1 –1 1 –1 1 z xy

E 2 0 –2 0 0 (x, y),(Rx, Ry) (xz, yz)

D3d E 2C3 3C2 i 2S6 3σd
A1g 1 1 1 1 1 1 z2,x2 + y2

A2g 1 1 –1 1 1 –1 Rz

Eg 2 –1 0 2 –1 0 (Rx, Ry) (xz, yz),(xy, x2 − y2)

A1u 1 1 1 –1 –1 –1

A2u 1 1 –1 –1 –1 1 z

Eu 2 –1 0 –2 1 0 (x, y)

D4d E 2C4 C2 4C ′
2 2S8 2S3

8 4σd
A1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 –1 1 1 –1 Rz

B1 1 1 1 1 –1 –1 –1

B2 1 1 1 –1 –1 –1 1 z

E1 2 0 –2 0
√
2 −

√
2 0 (x, y)

E2 2 –2 2 0 0 0 0 (xy, x2 − y2)

E3 2 0 –2 0 −
√
2

√
2 0 (Rx, Ry) (xz, yz)
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D5d E 2C5 2C2
5 5C2 i 2S3

10 2S10 5σd
A1g 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 –1 1 1 1 –1 Rz

E1g 2 2cos(2π/5) 2cos(4π/5) 0 2 2cos(2π/5) 2cos(4π/5) 0 (Rx, Ry) (xz, yz)

E2g 2 2cos(4π/5) 2cos(2π/5) 0 2 2cos(4π/5) 2cos(2π/5) 0 (xy, x2 − y2)

A1u 1 1 1 1 –1 –1 –1 –1

A2u 1 1 1 –1 –1 –1 –1 1 z

E1u 2 2cos(2π/5) 2cos(4π/5) 0 –2 –2cos(2π/5) –2cos(4π/5) 0 (x, y)

E2u 2 2cos(4π/5) 2cos(2π/5) 0 –2 –2cos(4π/5) –2cos(2π/5) 0

D6d E 2C6 2C3 C2 6C ′
2 2S12 2S5

12 2S4 6σd
A1 1 1 1 1 1 1 1 1 1 x2 + y2,z2

A2 1 1 1 1 –1 1 1 1 –1 Rz

B1 1 1 1 1 1 –1 –1 –1 –1

B2 1 1 1 1 –1 –1 –1 –1 1 z

E1 2 1 –1 –2 0
√
3

√
3 0 0 (x, y)

E2 2 –1 –1 2 0 1 1 –2 0 (xy, x2 − y2)

E3 2 –2 2 –2 0 0 0 0 0

E4 2 –1 –1 2 0 –1 –1 2 0

E5 2 1 –1 –2 0
√
3

√
3 0 0 (Rx, Ry) (xz, yz)

Rotation groups, Dn

D2 E C2(z) C2(y) C2(x)

A1 1 1 1 1 z2,x2 + y2

B1 1 1 –1 –1 Rz,z xy

B2 1 –1 1 –1 Ry,y xz

B3 1 –1 –1 1 Rx,x yz

85



D3 E 2C3 3C2

A1 1 1 1 z2,x2 + y2

A2 1 1 –1 z,Rz

E 2 –1 0 (x, y),(Rx, Ry) (xz, yz),(xy, x2 − y2)

D4 E 2C4 C2 2C ′
2 2C ′′

2

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 –1 –1 Rz,z

B1 1 –1 1 1 –1 x2 − y2

B2 1 –1 1 –1 1 xy

E 2 0 –2 0 0 (x, y),(Rx, Ry) (xz, yz)

D5 E 2C5 2C2
5 5C2

A1 1 1 1 1 x2 + y2,z2

A2 1 1 1 –1 z,Rz

E1 2 2cos (2π/5) 2cos (4π/5) 0 (x, y),(Rx, Ry) (xz, yz)

E2 2 2cos (4π/5) 2cos (2π/5) 0 (xy, x2 − y2)

D6 E 2C6 2C3 C2 3C ′
2 3C ′′

2

A1 1 1 1 1 1 1 x2 + y2,z2

A2 1 1 1 1 –1 –1 z,Rz

B1 1 –1 1 –1 1 –1

B2 1 –1 1 –1 –1 1

E1 2 1 –1 –2 0 0 (x, y),(Rx, Ry) (xz, yz)

E2 2 –1 –1 2 0 0 (xy, x2 − y2)

Cubic point groups
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Td E 8C3 3C2 6S4 6σd
A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 –1

E 2 –1 2 0 0 (z2, x2 − y2)

T1 3 0 –1 1 –1 (Rx, Ry, Rz)

T2 3 0 –1 –1 1 (x, y, z) (xy, xz, yz)

T E 4C3 4C2
3 3C2

A 1 1 1 1 x2 + y2 + z2

E 1 ε ε2 1 z2

1 ε2 ε 1 x2 − y2

T 3 0 0 1 (x, y, z),(Rx, Ry, Rz) (xy, xz, yz)

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd
A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 –1 –1 1 1 –1 1 1 –1

Eg 2 –1 0 0 2 2 0 –1 2 0 (z2, x2 − y2)

T1g 3 0 –1 1 –1 3 1 0 –1 –1 (Rx, Ry, Rz)

T2g 3 0 1 –1 –1 3 –1 0 –1 1 (xy, xz, yz)

A1u 1 1 1 1 1 –1 –1 –1 –1 –1

A2u 1 1 –1 –1 1 –1 1 –1 –1 1

Eu 2 –1 0 0 2 –2 0 1 –2 0

T1u 3 0 –1 1 –1 –3 –1 0 1 1 (x, y, z)

T2u 3 0 1 –1 –1 –3 1 0 1 –1

O E 8C3 3C2 6C4 6C ′
2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 –1 1

E 2 –1 2 0 0 (z2, x2 − y2)

T1 3 0 –1 1 –1 (x, y, z),(Rx, Ry, Rz)

T2 3 0 –1 –1 1 (xy, xz, yz)
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Ih E 12C5 12C2
5 20C3 15C2 i 12S10 12S2

10 20S6 15σ

Ag 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

T1g 3 η+ η 0 –1 3 η η+ 0 –1 (Rx, Ry, Rz)

T2g 3 η η+ 0 –1 3 η+ η 0 –1

Gg 4 –1 –1 1 0 4 –1 –1 1 0

Hg 5 0 0 –1 1 5 0 0 –1 1 (z2, x2 − y2, xy, yz, xz)

Au 1 1 1 1 1 –1 –1 –1 –1 –1

T1u 3 η+ η 0 –1 –3 –η –η+ 0 1 (x, y, z)

T2u 3 η η+ 0 –1 –3 –η+ –η 0 1

Gu 4 –1 –1 1 0 –4 1 1 –1 0

Hu 5 0 0 –1 1 –5 0 0 1 –1

η+ = 1
2 (1 +

√
5) = 2cos(4π/5) η− = 1

2 (1−
√
5) = 2cos(2π/5)

Linear point groups, D∞h and C∞v

D∞h E 2Cφ
∞ … ∞σv i 2Sφ

∞ … ∞C2

A1g = Σ+
g 1 1 … 1 1 1 … 1 x2 + y2,z2

A1g = Σg 1 1 … –1 1 1 … –1

E1g = Πg 2 2cos(φ) … 0 2 –2cos(φ) … 0 (xz, yz)

E2g = ∆g 2 2cos(2φ) … 0 2 2cos(2φ) … 0 (xy, x2 − y2)

E3g = Φg 2 2cos(3φ) … 0 2 –2cos(3φ) … 0

… … … …

A1u = Σ+
u 1 1 … 1 –1 –1 … –1 z

A1u = Σu 1 1 … –1 –1 –1 … 1

E1u = Πu 2 2cos(φ) … 0 –2 2cos(φ) … 0 (x, y)

E2u = ∆u 2 2cos(2φ) … 0 –2 –2cos(2φ) … 0

E3u = Φu 2 2cos(3φ) … 0 –2 2cos(3φ) … 0
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C∞v E 2Cφ
∞ … ∞σv

A1 = Σ+ 1 1 … 1 z x2 + y2,z2

A2 = Σ 1 1 … –1 Rz

E1 = Π 2 2cos(φ) … 0 (x, y),(Rx, Ry) (xz, yz)

E2 = ∆ 2 2cos(2φ) … 0 (xy, x2 − y2)

E3 = Φ 2 2cos(3φ) … 0
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12 Problems
12.1 Basic features of symmetry

1. Draw sketches to illustrate the following symmetry elements:

(a) a vertical mirror plane and a C2 axis in O3 (ozone)

(b) a horizontal mirror plane in CO2

(c) an S4 axis in methane

(d) all of the symmetry elements in CH3F (point group C3v)

(e) all of the symmetry elements in ethene (point group D2h)

2. Determine the symmetry elements possessed by an s orbital, a p orbital, a dz2 orbital, and a
dxy orbital

3. Which of the following molecules has:

(a) a centre of inversion

(b) an S4 axis?

CO2 C2H2 BF3 SO4
2–

4. Identify the symmetry elements in the following molecules, and assign each one to a point
group (use the flow diagram in the lecture notes if you find this helpful).

NH2Cl SiF4 HCN SiFClBrI NO2 H2O2

5. What are the symmetry elements that prevent a molecule from being polar? Which of the
molecules in Q 4 are polar?

6. What are the symmetry elements that exclude chirality? Which (if any) of the molecules in Q
4 may be chiral?

7. By examining the effect of sequential application of the various symmetry operations in the
C2v group on an appropriate molecule, construct the group multiplication table.

8. Consider the chlorobenzene molecule C6H5Cl.

(a) What is the molecular point group?

(b) Use a basis made up of a p orbital on each carbon atom (pointing perpendicular to the
benzene ring) to construct the π molecular orbitals using the following steps:

i. determine the character of each symmetry operation

ii. determine the irreps spanned by the basis

iii. construct a set of SALCs and take linear combinations to form the molecular orbitals
of each symmetry species.
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12.2 More advanced problems
1. Consider the hydronium ion H3O+. This ion has a pyramidal structure with one HOH bond

angle smaller than the other two, and belongs to the point group Cs.

(a) Using a basis set consisting of a 1s orbital on each H atom and 2s, 2px, 2py and 2pz
orbitals on the O atom (i.e. (sO,px,py,pz,s1,s2,s3)), construct a matrix representation.

(b) What are the characters of each of the matrix representatives?

(c) What are the irreps spanned by the basis?

(d) Use the basis to construct a set of SALCs.

(e) Write down the general form of the molecular orbitals of H3O+.

2. The transformation matrix C in section 5.4 is given by:

C =


1√
3

2√
6

0

1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2


By showing that CC−1 = C−1C = I (or otherwise), verify that its inverse, C−1, is given by:

C−1 =


1√
3

1√
3

1√
3

2√
6

− 1√
6

− 1√
6

0 1√
2

− 1√
2


Show that C−1Γ(g)C gives the transformed matrices Γ(g)

′ given in the text.

3. Apply the reduction formula to derive the irreducible representations of the SALCS formed by
the nine F 2p orbitals in BF3. There needs to be a set of three orthogonal p orbitals on each
F atom, but you can orient the x, y, z axes on each atom in the way that most conveniently
reflects the symmetry of the system. A physically intuitive choice is to align one p orbital
along the B-F bond, another perpendicular to the B-F bond but in the molecular plane and a
third perpendicular to the molecular plane.

4. Construct an MO diagram for the σ-like levels of XeF6 in a hypothetical octahedral (Oh)
geometry. Using tables of descent of symmetry, discuss possible distortions which would be
expected to lower the energy of this molecule.

5. Use the reduction formula to derive the irreducible representations spanned by the π-type C
2p orbitals in square C4H4 (you could use D4h but C4v is easier). Repeat the process for
rectangular C4H4, where two bonds are longer than the other two. Comment on your results
in light of the descent in symmetry table shown below:

6. How can group theory be used to determine whether an integral can be non-zero?

7. Use group theory to determine whether the following integrals are non-zero (use the tables of
direct products provided in the lecture handout).
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D4h D2h

A1g Ag

A2g B1g

B1g B1g

B2g Ag

Eg B2g+B3g

A1u Au

A2u B1u

B1u B1u

B2u Au

Eu B2u+B3u

(a) the overlap integral between a px orbital and a pz orbital in the point group C2v

(b) the overlap integral between a px orbital and a dxz orbital in the point group C3v

(c) the overlap integral between a py orbital and a dz2 orbital in the point group Td

(d) the overlap integral between a pz orbital and a dz2 orbital in the point group D2h

8. Which of the following electronic transitions are symmetry allowed?

(a) a transition from a state of A1 symmetry to a state of E1 symmetry excited by z-polarised
light in a molecule belonging to the point group C5v.

(b) a transition from a state of A1g symmetry to a state of A2u symmetry excited by z-
polarised light in a molecule belonging to the point group D∞h.

(c) a transition from a state of B2 symmetry to a state of B1 symmetry excited by y-polarised
light in a molecule belonging to the point group C2v.

9. The sequence of electronic states for d7 Co(II) ions in a tetrahedral environment is 4A2 >
4

T2 >
4 T1 >

4 T1. Show that in absorption from the 4A2 ground state, only two of the pos-
sible three transitions are electronically allowed by an electric dipole mechanism, but that in
emission from the highest 4T1 state, all three transitions are allowed.

10. Show that the transition 2T2g →2 Eg in an octahedral d1 compound is magnetic dipole allowed.

11. Use the reduction formula to show that the bond stretching vibrations in SF6 belong to irre-
ducible representations A1g+Eg+T1u. By matching the displacement vectors to atomic orbitals
on S of the same symmetry (or otherwise), sketch out the atomic displacements in these normal
modes. Which of these modes is IR active? Which are Raman active?

12. Derive the irreducible representations of the C–H stretching vibrations in benzene (C6H6) and
sketch out the displacements in these normal modes of vibration. (Hint: the working relating
to the π MOs in benzene should both be useful to you.)
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13. A useful shortcut to deriving the stretching modes of vibration in an ABn polyatomic is to
recognise that the set of irreducible representations spanned by the n bond stretching vectors
is the same as that spanned by the atomic wavefunctions on A which are used to construct
hybrid orbitals along the bond directions. Verify that this approach gives the same answers as
those derived from application of the reduction formula for bond stretching vibrations in SF6
(sp3d2), CF4 (sp3) and XeF4 (sp2d). What is the symmetry of the stretching vibrations in
BF3 (sp2) and PF5 (sp3d). (Hints. Remember that a central atom s orbital is always totally
symmetric, and that transformation properties of p and d orbitals are always given in the
character table. Be careful that the irreducible representations you choose correspond to the
correct number of atomic orbitals.)

14. Use a full set of displacement vectors to derive the normal modes of vibration of cis and trans
isomers of N2F2. Discuss the pattern of infrared and Raman activity for the two isomers and
show how vibrational spectroscopy can be used to distinguish the two isomers.

15. Use a basis set with three vectors on each H atom but no vectors on N to derive the complete
set of vibrations for NH3. Compare your calculation with that given in the handout, where a
“full” basis set was used.

16. Derive the normal modes of vibration of BF3 (D3h) and discuss the activity of these modes in
IR and Raman spectroscopy. Compare these results with those for NH3. Which overtone and
combination bands would be active in IR spectroscopy of BF3?
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